素数的定义
定义:在一个大于0的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。
思路<1> 试除法
思路<2> 试除法 + 抛去偶数
思路<3> 试除法 + 抛去偶数 + 缩小试除范围
思路<4> 对素数试除法 + 减少扫描区间
————————————
思路(3) 试除法 + 抛去偶数 + 缩小试除范围
具体思路:思路 1和思路 2的试除范围都在[2,n - 1],其实范围可以限制在[2,sqrt[n]],因为如果一个数不是素数,那么它肯定有至少有俩因子,而且因子也是成对出现的,而且一个因子是大于sqrt[n]的,一个因子是小于sqrt[n]的。
代码:
///试除法 + 刨除偶数 + 减少扫描区间
bool IsPrime(int nNum)
{
if (nNum == 2)
{
return true;
}
if ((nNum & 1) == 0)//刨除偶数
{
return false;
}
for (int i = 3;i * i <= nNum;i += 2)
{
if (nNum % i == 0)
{
return false;
}
}
return true;
}
在单独处理偶数时,这里使用位操作进行做的,效率比取余操作高。
————————————–
思路(4) 对素数试除法 + 减少扫描区间
分析:
(1)合数(不是素数就是合数)是由若干个质数相乘而得来的,比如,合数6是有素数2和3相乘得到。15是由素数3和5相乘得到。
(2)前几个思路使用试除法时,也对合数进行了取余,所以造成浪费。比如判断103是否为素数时,如果采用试除法 + 抛去偶数 + 缩小试除范围的方法,则需要取余的整数为2,3,5,7,9,10。我们可以观察3和9,如果一个数N能被9整除,那么它肯定能被3整除。反过来说,如果N不能被3整除,则肯定不能被9整除。因此我们只需要检查3即可。对于10也是,如果N不能被2和5整除,它肯定也不能被10整除。
因此,我们要判断数N是否是素数时,只需要对[1,sqrt(N)]之间的素数进行试除即可。
注意,这里的前提是我们已知[1,sqrt(N)]之间的素数。
代码:假设我们已经知道素数集合nArrPrimeTable中,素数个数为nCount个。
//对素数试除法 + 减少扫描区间
bool IsPrime(int nNum)
{
if (nNum == 2)
{
return true;
}
for (int i = 0;i < nCount && nArrPrimeTable[i] * nArrPrimeTable[i] <= nNum;i++)
{
if (nNum % nArrPrimeTable[i] == 0)
{
return false;
}
}
return true;
}