前序中序后序遍历递归非递归实现

前序遍历

根-左儿子-右儿子

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
void preorder(TreeNode *root, vector<int> &v) {
    if (root == NULL) return;
    v.push_back(root->val);
    preorder(root->left,v);
    preorder(root->right,v);
}

非递归遍历时就是模拟栈,注意入栈顺序即可

void preorder(TreeNode *root, vector<int> &v) {
    if (root == NULL) return;
    stack<TreeNode*> s;
    s.push(root);
    while (!s.empty()) {
       TreeNode *p = s.top();
       s.pop();
       if (p == NULL) continue;
       v.push_back(p->val);
       s.push(p->right);
       s.push(p->left);
    }
}

中序遍历

左二子-根-右儿子

void inorder(TreeNode *root, vector<int> &v) {
    if (root == NULL) return;
    inorder(root->left, v);
    v.push_back(root->val);
    inorder(root->right,v);
}

非递归遍历时要保证访问根节点前已经访问完左二子

void inorder(TreeNode *root, vector<int> &v) {
    if (root == NULL) return;
    stack<TreeNode*> s;
    TreeNode* p = root;
    while (p || !s.empty()) {
        while (p) {
            s.push(p);
            p = p->left;
        }
        if (!s.empty()) {
            p = s.top();
            v.push_back(p->val);
            s.pop();
            p = p->right; //这里利用right为空或者非空来避开p重复进while
        }
    }
}

后序遍历

左儿子-右儿子-根

void postorder(TreeNode *root, vector<int> &v) {
    if (root == NULL) return;
    postorder(root->left, v);
    postorder(root->right, v);
    v.push_back(root->val);
}

后序遍历要保证儿子们都遍历完了才访问根。用一个辅助节点pre记录上次访问的节点,则输出该节点时只有该节点为叶子节点或者pre为其儿子。否则把其儿子加入栈

void postorder(TreeNode *root, vector<int> &v) {
    if (root == NULL) return;
    stack<TreeNode*> s;
    TreeNode* cur = root;
    TreeNode* pre = NULL;
    s.push(root);
    while (!s.empty()) {
        cur = s.top();
        if ((cur->left == NULL && cur->right == NULL)||((pre)&&(pre == cur->left || pre == cur->right))){
            v.push_back(cur->val);
            pre = cur;
            s.pop();
        }
        else {                              //入栈和访问节点是不同循环的。因为已经访问了该节点说明其儿子节点已经被访问过了,不能再入栈
            if(cur->right) s.push(cur->right);
            if(cur->left) s.push(cur->left);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值