求高精度幂
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
2
-
描述
-
对数值很大、精度很高的数进行高精度计算是一类十分常见的问题。比如,对国债进行计算就是属于这类问题。
现在要你解决的问题是:对一个实数R( 0.0 < R < 99.999 ),要求写程序精确计算 R 的 n 次方(Rn),其中n 是整数并且 0 < =n <= 25。-
输入
- 输入有多行,每行有两个数R和n,空格分开。R的数字位数不超过10位。 输出
- 对于每组输入,要求输出一行,该行包含精确的 R 的 n 次方。输出需要去掉前导的 0 后不要的 0 。如果输出是整数,不要输出小数点。 样例输入
-
95.123 120.4321 205.1234 156.7592 998.999 101.0100 12
样例输出
-
548815620517731830194541.899025343415715973535967221869852721.0000000514855464107695612199451127676715483848176020072635120383542976301346240143992025569.92857370126648804114665499331870370751166629547672049395302429448126.76412102161816443020690903717327667290429072743629540498.1075960194566517745610440100011.126825030131969720661201
#include<stdio.h>
#include<string.h>
const int maxn = 500;
int f[maxn];
int main()
{
double m;
int n;
while(scanf("%lf %d", &m, &n) != EOF)
{
if(n == 0)
{
printf("1\n");
continue;
}
int flag = 0;
int i, j, k;
char str[100] = {0}, str1[100] = {0};
memset(f, 0, sizeof(f));
sprintf(str, "%g", m); //有点小bug %g只能控制小数点后6位 有待改进
int len = strlen(str);
for(i = 0, j = 0; i < len; i++)
{
if(str[i] == '.')
{
k = i;
continue;
}
else
str1[j++] = str[i];
}
k = len - k -1;
k = n * k;
int value;
sscanf(str1, "%d", &value);
f[0] = 1;
for(i = 0; i < n; i++) //大数计算的主要步骤
{
int c = 0;
for(j = 0; j < maxn; j++)
{
int s = f[j] * value + c; //不断更新
f[j] = s % 10;
c = s / 10;
}
}
for(j = maxn - 1; j >= 0;j--) //消除缀余的0
{
if(f[j])
break;
}
int l;
if(str[0] == '0') //补充小于1时前面的0
{
printf(".");
for(l = 0; l < k - j -1; l++)
printf("0");
for(i = j; i >= 0; i--)
printf("%d", f[i]);
printf("\n");
}
else
{
int lenth = strlen(str);
for(i = 0; i < lenth; i++)
{
if(str[i] == '.')
{
flag = i;
break;
}
}
lenth = lenth - flag - 1;
for(i = j; i >= n * lenth ; i--)
printf("%d",f[i]);
if(flag)printf(".");
for(i; i >= 0; i--)
printf("%d",f[i]);
printf("\n");
}
}
return 0;
}