SPFA

SPFA算法

来自NOCOW
跳转到: 导航, 搜索

目录

 [隐藏

算法简介

SPFA(Shortest Path Faster Algorithm)是Bellman-Ford算法的一种队列实现,减少了不必要的冗余计算。

算法流程

算法大致流程是用一个队列来进行维护。初始时将源加入队列。每次从队列中取出一个元素,并对所有与他相邻的点进行松弛,若某个相邻的点松弛成功,则将其入队。直到队列为空时算法结束。

这个算法,简单的说就是队列优化的bellman-ford,利用了每个点不会更新次数太多的特点发明的此算法

SPFA——Shortest Path Faster Algorithm,它可以在O(kE)的时间复杂度内求出源点到其他所有点的最短路径,可以处理负边。SPFA的实现甚至比Dijkstra或者Bellman_Ford还要简单:

设Dist代表S到I点的当前最短距离,Fa代表S到I的当前最短路径中I点之前的一个点的编号。开始时Dist全部为+∞,只有Dist[S]=0,Fa全部为0。

维护一个队列,里面存放所有需要进行迭代的点。初始时队列中只有一个点S。用一个布尔数组记录每个点是否处在队列中。

每次迭代,取出队头的点v,依次枚举从v出发的边v->u,设边的长度为len,判断Dist[v]+len是否小于Dist[u],若小于则改进Dist[u],将Fa[u]记为v,并且由于S到u的最短距离变小了,有可能u可以改进其它的点,所以若u不在队列中,就将它放入队尾。这样一直迭代下去直到队列变空,也就是S到所有的最短距离都确定下来,结束算法。若一个点入队次数超过n,则有负权环。

SPFA 在形式上和宽度优先搜索非常类似,不同的是宽度优先搜索中一个点出了队列就不可能重新进入队列,但是SPFA中一个点可能在出队列之后再次被放入队列,也就是一个点改进过其它的点之后,过了一段时间可能本身被改进,于是再次用来改进其它的点,这样反复迭代下去。设一个点用来作为迭代点对其它点进行改进的平均次数为k,有办法证明对于通常的情况,k在2左右。

SPFA算法(Shortest Path Faster Algorithm),也是求解单源最短路径问题的一种算法,用来解决:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。 SPFA算法是Bellman-Ford算法的一种队列实现,减少了不必要的冗余计算,他的基本算法和Bellman-Ford一样,并且用如下的方法改进: 1、第二步,不是枚举所有节点,而是通过队列来进行优化 设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止。 2、同时除了通过判断队列是否为空来结束循环,还可以通过下面的方法: 判断有无负环:如果某个点进入队列的次数超过V次则存在负环(SPFA无法处理带负环的图)。

SPFA算法有两个优化算法 SLF 和 LLL: SLF:Small Label First 策略,设要加入的节点是j,队首元素为i,若dist(j)<dist(i),则将j插入队首,否则插入队尾。 LLL:Large Label Last 策略,设队首元素为i,队列中所有dist值的平均值为x,若dist(i)>x则将i插入到队尾,查找下一元素,直到找到某一i使得dist(i)<=x,则将i出对进行松弛操作。 SLF 可使速度提高 15 ~ 20%;SLF + LLL 可提高约 50%。 在实际的应用中SPFA的算法时间效率不是很稳定,为了避免最坏情况的出现,通常使用效率更加稳定的Dijkstra算法。

伪代码

Procedure SPFA;
 
Begin
  initialize-single-source(G,s);
  initialize-queue(Q);
  enqueue(Q,s);
  while not empty(Q) do 
    begin
      u:=dequeue(Q);
      for each v∈adj[u] do 
        begin
          tmp:=d[v];
          relax(u,v);
          if (tmp<>d[v]) and (not v in Q) then
            enqueue(Q,v);
        end;
    end;
End;

代码

最基本的SPFA

bool	Relax(long	&w,long	m){return	m<w?(w=m,1):0;}//"松弛"操作
const	long	maxV=1000,maxE=999000;//最大顶点数,最大边数
long	m,H[maxV],D[maxV];//m为边数,初始化为0;H为链表头,初始化为-1;D为距离
struct	Edge{long	z,y,w;}E[maxE];//静态邻接表,w为权,y为边终点,z为静态指针
void	addE(long	x,long	y,long	w){E[m].y=y,E[m].w=w,E[m].z=H[x],H[x]=m++;}//加一条从x指向y,权为w的边
#include<cstring>
#include<queue>
void	SPFA(long	x=0){//默认计算从0点出发到达其他点的最短路
	bool	F[maxV]={};//初始为0的bool数组表示在不在队内
	std::queue<long>Q;//初始空队列
	for(memset(D,0x3f,sizeof(D)),D[x]=0,F[x]=1,Q.push(x);!Q.empty();F[x]=0,Q.pop())//迭代到队列再次变空
		for(long	i=H[x=Q.front()],y;~i;i=E[i].z)//对于所有与x相邻的边
			if(Relax(D[y=E[i].y],E[i].w+D[x])&&!F[y])	F[y]=1,Q.push(y);//如果松弛成功,则要确保y已入队
}

SPFA(slf优化)

void Spfa()
{
    d[S]=0;
    v[S]=true;
    deque <int> q;
    for(q.push_back(S);!q.empty();)
    {
        int x=q.front();
        q.pop_front();
        for(int k=head[x];k!=-1;k=el[k].next)
        {
            int y=el[k].y;
            if(d[y]>d[x]+el[k].c)
            {
                d[y]=d[x]+el[k].c;
                if(!v[y])
                {
                    v[y]=true;
                    if(!q.empty())
                    {
                        if(d[y]>d[q.front()])
                            q.push_back(y);
                        else
                            q.push_front(y);
                    }
                    else
                        q.push_back(y);
                }
            }
        }
        v[x]=false;
    }
    return ;
}

procedure spfa;
begin
  fillchar(q,sizeof(q),0); h:=0; t:=0;//队列
  fillchar(v,sizeof(v),false);//v[i]判断i是否在队列中
  for i:=1 to n do 
    dist[i]:=maxint;//初始化最小值
 
  inc(t);
  q[t]:=1;
  v[1]:=true;
  dist[1]:=0;//这里把1作为源点
 
  while h<>t do
    begin
      h:=(h mod n)+1;
      x:=q[h];
      v[x]:=false;
      for i:=1 to n do
        if (cost[x,i]>0) and (dist[x]+cost[x,i]<dist[i]) then
          begin
            dist[i]:=dist[x]+cost[x,i];
            if not(v[i]) then
              begin
                t:=(t mod n)+1;
                q[t]:=i;
                v[i]:=true;
              end;
          end;
    end;
end;
void SPFA(void)
{
 int i;
 queue list;
 list.insert(s);
 for(i=1;i<=n;i++)
  {
   if(s==i)
    continue;
   dist[i]=map[s][i];
   way[i]=s;
   if(dist[i])
   list.insert(i);
  }
 int p;
 while(!list.empty())
 {
  p=list.fire();
  for(i=1;i<=n;i++)
   if(map[p][i]&&(dist[i]>dist[p]+map[p][i]||!dist[i])&&i!=s)
    {
     dist[i]=dist[p]+map[p][i];
     way[i]=p;
     if(!list.in(i))
      list.insert(i);
    }
 }
}

各种加上了注释

/*
 * 单源最短路算法SPFA,时间复杂度O(kE),k在一般情况下不大于2,对于每个顶点使用可以在O(VE)的时间内算出每对节点之间的最短路
 * 使用了队列,对于任意在队列中的点连着的点进行松弛,同时将不在队列中的连着的点入队,直到队空则算法结束,最短路求出
 * SPFA是Bellman-Ford的优化版,可以处理有负权边的情况
 * 对于负环,我们可以证明每个点入队次数不会超过V,所以我们可以记录每个点的入队次数,如果超过V则表示其出现负环,算法结束
 * 由于要对点的每一条边进行枚举,故采用邻接表时时间复杂度为O(kE),采用矩阵时时间复杂度为O(kV^2)
 */
#include<cstdio>
#include<vector>
#include<queue>
#define MAXV 10000
#define INF 1000000000 //此处建议不要过大或过小,过大易导致运算时溢出,过小可能会被判定为真正的距离
 
using std::vector;
using std::queue;
 
struct Edge{
	int v; //边权
	int to; //连接的点
};
 
vector<Edge> e[MAXV]; //由于一般情况下E<<V*V,故在此选用了vector动态数组存储,也可以使用链表存储
int dist[MAXV]; //存储到原点0的距离,可以开二维数组存储每对节点之间的距离
int cnt[MAXV]; //记录入队次数,超过V则退出
queue<int> buff; //队列,用于存储在SPFA算法中的需要松弛的节点
bool done[MAXV]; //用于判断该节点是否已经在队列中
int V; //节点数
int E; //边数
 
bool spfa(const int st){ //返回值:TRUE为找到最短路返回,FALSE表示出现负环退出
	for(int i=0;i<V;i++){ //初始化:将除了原点st的距离外的所有点到st的距离均赋上一个极大值
		if(i==st){
			dist[st]=0; //原点距离为0;
			continue;
		}
		dist[i]=INF; //非原点距离无穷大
	}
	buff.push(st); //原点入队
	done[st]=1; //标记原点已经入队
	cnt[st]=1; //修改入队次数为1
	while(!buff.empty()){ //队列非空,需要继续松弛
		int tmp=buff.front(); //取出队首元素
		for(int i=0;i<(int)e[tmp].size();i++){ //枚举该边连接的每一条边
			Edge *t=&e[tmp][i]; //由于vector的寻址速度较慢,故在此进行一次优化
			if(dist[tmp]+(*t).v<dist[(*t).to]){ //更改后距离更短,进行松弛操作
				dist[(*t).to]=dist[tmp]+(*t).v; //更改边权值
				if(!done[(*t).to]){ //没有入队,则将其入队
					buff.push((*t).to); //将节点压入队列
					done[(*t).to]=1; //标记节点已经入队
					cnt[(*t).to]+=1; //节点入队次数自增
					if(cnt[(*t).to]>V){ //已经超过V次,出现负环
						while(!buff.empty())buff.pop(); //清空队列,释放内存
						return false; //返回FALSE
					}
				}
			}
		}
		buff.pop();//弹出队首节点
		done[tmp]=0;//将队首节点标记为未入队
	}
	return true; //返回TRUE
} //算法结束
 
int main(){ //主函数
	scanf("%d%d",&V,&E); //读入点数和边数
	for(int i=0,x,y,l;i<E;i++){
		scanf("%d%d%d",&x,&y,&l); //读入x,y,l表示从x->y有一条有向边长度为l
		Edge tmp; //设置一个临时变量,以便存入vector
		tmp.v=l; //设置边权
		tmp.to=y; //设置连接节点
		e[x].push_back(tmp); //将这条边压入x的表中
	}
	if(!spfa(0)){ //出现负环
		printf("出现负环,最短路不存在\n");
	}else{ //存在最短路
		printf("节点0到节点%d的最短距离为%d",V-1,dist[V-1]);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值