DarkKris

There is DarkKris‘s Blog , Welcome .

NOIp2012TG/Luogu P1082 同余方程 解题报告

这是一道数论题,是扩展欧几里得算法的裸题
博主为了让自己记住这个算法,特地来写一篇博文

下面来看看一下题:

题目描述

求关于 x 的同余方程 ax1 (mod b)的最小正整数解。

输入输出格式

输入格式:
输入只有一行,包含两个正整数 a, b,用一个空格隔开。

输出格式:
输出只有一行,包含一个正整数 x0,即最小正整数解。输入数据保证一定有解。

输入输出样例

输入样例#1:
3 10
输出样例#1:
7

说明

【数据范围】

对于 40%的数据,2 ≤b≤ 1,000;

对于 60%的数据,2 ≤b≤ 50,000,000;

对于 100%的数据,2 ≤a, b≤ 2,000,000,000。

NOIP 2012 提高组 第二天 第一题


解题思路

扩展欧几里得算法

分析:
ax1(modb)可以通过移项变为:ax10(modb) .
然后再次变为ax1=bt 。即:axbt1
所以用扩展欧几里德方法解就可以了。

下面是C++代码:

#include <iostream>
#include <cstdio>
using namespace std;
long long x,y,a,b,ans;
long long gcd(long long a,long long b)//扩展欧几里得算法
{
    long long t,ret;
    if(b==0)//欧几里得算法
    {
        x=1;
        y=0;
        return a;
    }
    ret=gcd(b,a%b);
    t=y;//扩展欧几里得
    y=x-(a/b)*y;
    x=t;
    return ret;
}
int main()
{
    cin>>a>>b;
    ans=gcd(a,b);
    while(x>b)x-=b; //输出最小正整数解
    while(x<0)x+=b;
    cout<<x<<endl;
    return 0;
}

写给自己:如果无法理解,建议背过代码

感谢惠读

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u012709325/article/details/52346862
个人分类: OI解题报告
上一篇几种求素数与验证素数的方法
下一篇关于std::ios::sync_with_stdio(false);
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭