斐波那契数列:BestCoder Round #29 1002 || hdu 5171

题目大意
以数集合multiset为背景,求解类似斐波那契数列前n项的和。

解题思路
为了减少时间复杂度,肯定是矩阵快速幂
先不着急解题,补充一下斐波那契的相关知识。F(n)=F(n-1)+F(n-2)

一.斐波那契数列

斐波那契数列众所周知,F0=0,F1=F2=1,Fn=Fn-1+Fn-2,即数列
1,1,2,3,5,8,13……

矩阵形式:
这里写图片描述

所以求通项只需要快速幂n次,取结果矩阵第一行第2个元素或第二行第一个元素即可。
这里补充一下矩阵快速幂的相关知识,参考链接:

http://blog.csdn.net/u012717411/article/details/43119477

二.扩展斐波那契数列

扩展的就是更具一般性,F0,F1不一定是0,1;换句话说数列仅仅满足递推公式fn=fn-1+fn-2了,这时候同样有如下矩阵表达式成立:

这里写图片描述

如果涉及到前n项和Sn,有这样的矩阵表达式:

这里写图片描述

三.再拓展斐波那契数列

数列满足这样的递推公式:这里写图片描述

有等价的矩阵表达式:
这里写图片描述

看完上面地分析以后,是不是知道该怎么做了?
没错,利用二.拓展斐波那契数列中的关于Sn的矩阵表达式,矩阵快速幂求解就可以得到Sn.

参考代码+部分解释

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <map>
#include <vector>
#include <cstring>
#include<cmath>
#define eps 1e-8
using namespace std;
typedef long long ll;
const int maxn = 1e5+10;
const int mod = 10000007;
ll n,k;
struct matrix
{
    ll m[3][3];
}a,p;
matrix multi(matrix a,matrix b)
{
    matrix c;
    for(int i=0;i<3;i++)
    for(int j=0;j<3;j++){
        c.m[i][j]=0;
        for(int k=0;k<3;k++)
            c.m[i][j]+=a.m[i][k]*b.m[k][j];
        c.m[i][j]%=mod;
    }
    return c;
}
matrix quickpow_mod(matrix a,ll b)
{
    matrix ans=p;
    while(b){
        if(b&1) ans=multi(ans,a);
        b>>=1;
        a=multi(a,a);
    }
    return ans;
}
int main()
{
  //  freopen("input.txt","r",stdin);
    a.m[0][0]=a.m[0][1]=a.m[0][2]=a.m[1][1]=a.m[1][2]=a.m[2][1]=1;a.m[1][0]=a.m[2][0]=a.m[2][2]=0;//a,p矩阵初始化
    p.m[0][0]=p.m[1][1]=p.m[2][2]=1;p.m[1][0]=p.m[0][1]=p.m[0][2]=p.m[1][2]=p.m[2][0]=p.m[2][1]=0;
    matrix ans;
    int num[maxn];
    while(cin>>n>>k){
       ll sum=0;
       for(int i=0;i<n;i++) {cin>>num[i];sum+=num[i];}sort(num,num+n);//排序找到最大值和第二大值
       ll F[3];F[1]=num[n-1]+num[n-2],F[0]=sum+F[1],F[2]=num[n-1];//构建矩阵[S1 F1 F0]',存于F[]数组
       ans=quickpow_mod(a,k-1);
       ll res=0;
       for(int i=0;i<3;i++) res+=ans.m[0][i]*F[i]; res%=mod;
       cout<<res<<endl;

    }
    return 0;
}


“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论

打赏作者

Hacker_vision

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值