一般打牌需要分析对手手里的成牌,或者对手手里有几对,这有助于我们算对方手牌。比如我们可以算出成对的概率是多少,然后再判断一局游戏有几个人打七小对。
问题:
136张牌中,有34*4张牌,这34张牌每种有4张。请问随机选择14张中,有多少对的概率,对的意思是2张一样的,3张一样的也算一对,4张一样的算2对。然后14张中有1对,2对,3对,4对,5对,6对,7对的概率?
答案是最后有个表格:
对数(k) | 概率范围 | 百分比 | 主要构成场景 |
---|---|---|---|
1对 | ≈35%~45% | 约40% | 1个三张 + 单张,或1个两对 |
2对 | ≈25%~35% | 约30% | 2个两对,或1个四张 |
3对 | ≈15%~25% | 约20% | 3个两对,或1个四张+1个两对 |
4对 | ≈5%~15% | 约10% | 4个两对,或2个四张 |
5对 | ≈1%~5% | 约3% | 高概率需包含多个四张/三张 |
6对 | <1% | 约0.5% | 需至少3个四张或复杂组合 |
7对 | 接近0% | <0.1% | 极罕见(需4个四张+其他组合) |
对于上述的逻辑,感觉其思考的确实很复杂,因为对于3张牌一样的,只算一对,这是个条件,所以他所有的都把这个逻辑算上,加上4个又算2对,更麻了。然后不管怎么样我选择信任这个数据。
但是在现实麻将中的数据不知道更高还是更低,因为毕竟麻将会随机最后的成牌打牌,扔进麻将机后会出现一些相同的逻辑。如何考虑这个逻辑是比较复杂的,感觉还是要高的。但都不成对的概率看上面的分析是没有的。减去上面这些好像多大概率了。
继续分析,上面是包括东南西北发白这些字牌的概率,如果没有字牌的话,怎么算了。
问答:
112张牌中,有28*4张牌,这28张牌每种有4张。请问随机选择14张中,有多少对的概率,对的意思是2张一样的,3张一样的也算一对,4张一样的算2对。然后14张中有1对,2对,3对,4对,5对,6对,7对的概率
对数(k) | 概率范围 | 百分比 | 典型构成场景 |
---|---|---|---|
1对 | ≈25%~35% | 约30% | 1个三张 + 单张,或1个两对 |
2对 | ≈30%~40% | 约35% | 2个两对,或1个四张 |
3对 | ≈20%~30% | 约25% | 3个两对,或1个四张+1个两对 |
4对 | ≈10%~20% | 约15% | 4个两对,或2个四张 |
5对 | ≈5%~10% | 约7% | 高概率需包含多个四张/三张 |
6对 | ≈1%~5% | 约3% | 需至少3个四张或复杂组合 |
7对 | <1% | 约0.3% | 极罕见(需4个四张+其他组合) |
这个数据就是打红中麻将的数据,其实出现3对的概率25%,还是很高的。甚至如果是四川麻将的话,就会平均有3对以上,这才是正常数据,因为会考虑到换三张和单色定缺,这是很明了的了。对于这样的概率,我在想怎么描述让其分析,或者大概分析,我再理理。
问答:
112张牌中,有28*4张牌,这28张牌每种有4张。请问随机选择14张中,随机里面挑选不成对的3张,再随机从剩余牌中选3张,此时判断 有多少对的概率,对的意思是2张一样的,3张一样的也算一对,4张一样的算2对。然后14张中有1对,2对,3对,4对,5对,6对,7对的概率
对数(k) | 概率范围 | 百分比 | 典型构成场景 |
---|---|---|---|
1对 | ≈20%~30% | 约25% | 初始3张不成对,后续仅1个两对 |
2对 | ≈25%~35% | 约30% | 初始3张 + 后续1个两对 + 1个三张 |
3对 | ≈20%~30% | 约25% | 后续出现2个两对或1个四张 |
4对 | ≈10%~20% | 约15% | 后续2个四张或3个两对 |
5对 | ≈5%~10% | 约7% | 后续3个四张或混合组合 |
6对 | ≈1%~5% | 约3% | 极端组合(如4个四张) |
7对 | <1% | 约0.2% | 理论极限(需5个四张) |
感觉和上面概率是一样的,如果换6张会不会提高,我看看
问答:
112张牌中,有28*4张牌,这28张牌每种有4张。请问随机选择14张中,随机里面挑选不成对的6张,再随机从剩余牌中选6张,此时判断 有多少对的概率,对的意思是2张一样的,3张一样的也算一对,4张一样的算2对。然后14张中有1对,2对,3对,4对,5对,6对,7对的概率
对数(k) | 概率范围 | 百分比 | 典型构成场景 |
---|---|---|---|
1对 | ≈15%~25% | 约20% | 后续8张中形成1个独立对或与前6张重叠1对 |
2对 | ≈25%~35% | 约30% | 后续8张中2个独立对或1对重叠+1个独立对 |
3对 | ≈20%~30% | 约25% | 后续8张中3个独立对或混合重叠对 |
4对 | ≈10%~20% | 约15% | 后续8张中1个四张(2对) + 2个独立对 |
5对 | ≈5%~10% | 约7% | 后续8张中2个四张或高重叠组合 |
6对 | ≈1%~5% | 约3% | 极端组合(如3个四张) |
7对 | <1% | 约0.2% | 理论极限(需4个四张) |
感觉看不出来,他是个近似的逻辑,太夸张了,也就是说deepseek并没有想象中的无敌,就算他理解了很多东西,那我就让他不断的选,选择3次后所有成对的概率。
112张牌中,有28*4张牌,这28张牌每种有4张。请问随机选择14张中,里面成对的留下,不成对的放牌池,继续从牌池里随机选剩下的张数(凑齐14张)然后此时,不成对的放牌池,再继续从牌池里随机选剩下的张数(凑齐14张),如此往复,请算出每多重复此操作一次,手中牌成对的概率。此时判断 有多少对的概率,对的意思是2张一样的,3张一样的也算一对,4张一样的算2对。然后14张中有1对,2对,3对,4对,5对,6对,7对的概率,请用第一次,第二次...依次分析,分析5次这个操作 从牌池里随机选剩下的张数(凑齐14张) 的上述概率
回答如下:
核心逻辑
1. 牌池动态变化
- 保留规则:成对牌(2张、3张、4张)被保留,单张放回牌池。
- 牌池衰减:随着操作次数增加,牌池中可用牌种类减少(部分牌被永久保留),导致后续成对概率下降。
2. 概率计算难点
- 状态依赖:每次操作后的概率分布依赖于前一次保留的牌型和牌池剩余情况。
- 组合爆炸:需跟踪所有可能的牌型组合,计算复杂度极高,需借助概率递推或蒙特卡洛模拟。
分阶段概率分析(近似范围)
第一次操作(初始抽取)
对数(k) | 概率范围 | 百分比 | 说明 |
---|---|---|---|
1对 | ≈12%~18% | 约15% | 低概率因初始随机性高 |
2对 | ≈25%~30% | 约27% | 峰值区域,易形成2~3个独立对 |
3对 | ≈20%~25% | 约22% | 中等组合(3对+单张) |
4对 | ≈15%~20% | 约18% | 可能出现1个四张(2对) |
5对+ | ≈10%~15% | 约18% | 高重复组合概率低 |
逻辑:初始牌池完整,成对概率由组合数主导,峰值在2~3对。
第二次操作(补牌后)
对数(k) | 概率范围 | 百分比 | 说明 |
---|---|---|---|
1对 | ≈10%~15% | 约13% | 牌池减少,独立对概率下降 |
2对 | ≈20%~25% | 约23% | 保留牌可能贡献重叠对 |
3对 | ≈25%~30% | 约28% | 新峰值,补牌填补单张形成对 |
4对 | ≈18%~23% | 约20% | 保留牌中四张比例上升 |
5对+ | ≈12%~17% | 约16% | 高对数受限于牌池衰减 |
逻辑:补牌时优先填补单张,保留牌可能形成四张(2对),3对概率上升。
第三次操作
对数(k) | 概率范围 | 百分比 | 说明 |
---|---|---|---|
1对 | ≈8%~12% | 约10% | 牌池进一步减少 |
2对 | ≈18%~22% | 约20% | 独立对减少,依赖重叠对 |
3对 | ≈30%~35% | 约32% | 新峰值,保留牌中四张贡献2对 |
4对 | ≈20%~25% | 约22% | 四张组合占比显著上升 |
5对+ | ≈15%~20% | 约16% | 高对数概率因四张累积 |
逻辑:保留牌中的四张开始主导对数(2对/四张),3~4对成为主要分布。
第四次操作
对数(k) | 概率范围 | 百分比 | 说明 |
---|---|---|---|
1对 | ≈5%~8% | 约6% | 牌池接近枯竭 |
2对 | ≈15%~18% | 约16% | 依赖保留牌中的重叠对 |
3对 | ≈35%~40% | 约37% | 四张组合主导(如2个四张) |
4对 | ≈25%~30% | 约28% | 四张累积效应显著 |
5对+ | ≈13%~18% | 约13% | 极端组合概率有限 |
逻辑:牌池中可用牌种类大幅减少,四张组合占比超过50%。
第五次操作
对数(k) | 概率范围 | 百分比 | 说明 |
---|---|---|---|
1对 | ≈2%~5% | 约3% | 仅少数单张可补 |
2对 | ≈10%~15% | 约12% | 依赖前期保留的四张 |
3对 | ≈40%~45% | 约42% | 3~4个四张组合主导 |
4对 | ≈30%~35% | 约33% | 四张占比接近极限 |
5对+ | ≈8%~12% | 约10% | 牌池枯竭限制更高对数 |
逻辑:牌池中可用牌极少,成对完全由保留的四张贡献,3~4对占绝对优势。
总结规律
- 对数峰值迁移:
- 初始阶段以 2~3对 为主,补牌后逐渐向 3~4对 集中。
- 第3次操作后,四张组合(2对/四张)成为主导。
- 高对数衰减:
- 因牌池衰减,7对概率始终低于 0.1%,5对以上需极端牌型支持。
- 操作建议:
- 若需精确值,需通过 蒙特卡洛模拟 或 动态规划递推 实现。
- 工程中可近似认为:每多一次操作,3~4对概率上升10%~15%,其他区域同步下降
上述回答确实是有算的,不是忽悠我的结果吧,最起码一直换成多对以上的概率高,那么我让他一直换,换20次,成七对的概率看看是多少。
给出20次后成对概率?
deepseek给的回答是如下的:
动态演化规律(关键结论)
经过20次操作后,牌池中可用牌种类和数量大幅减少,成对概率趋于稳定状态。
以下是 第20次操作后 的近似概率分布:
对数(k) | 概率范围 | 百分比 | 说明 |
---|---|---|---|
1对 | <0.1% | ≈0% | 牌池枯竭,单张无法补足 |
2对 | ≈5%~8% | 约6% | 仅存少量独立对或重叠对 |
3对 | ≈15%~20% | 约18% | 保留牌中四张贡献2对 |
4对 | ≈35%~40% | 约38% | 主流场景(2个四张=4对) |
5对 | ≈25%~30% | 约28% | 3个四张(6对) + 1个三张 |
6对 | ≈8%~12% | 约9% | 极端组合(4个四张) |
7对 | <0.01% | ≈0% | 理论极限无法达成 |
演化逻辑(第1~20次操作趋势)
-
牌池衰减:
- 前5次:牌池快速减少,独立对概率下降,四张组合占比上升。
- 第10次:牌池中可用牌种类≤10种,四张组合主导对数(3~5对概率>60%)。
- 第20次:牌池接近枯竭,补牌只能依赖已保留牌型的剩余牌,四张组合占比>80%。
-
对数迁移:
- 初始阶段(1~5次):2~3对为主(概率峰值约30%)。
- 中期阶段(6~15次):4~5对为主(概率峰值约45%)。
- 后期阶段(16~20次):4~6对为主(概率峰值约55%)。
-
极限场景:
- 若操作无限次,所有牌最终被保留为四张(28种×4张=112张),此时手牌中最多有 14对(14张牌全为四张中的2对)。
- 但实际操作中,牌池会在约25次后完全枯竭(无法补牌)。
他的这个分析,我感觉出问题了,他没有理解到一些东西,他说 牌池会在约25次后完全枯竭(无法补牌) 可是我一共是112张啊,牌牌池的可继续选择的。是不是应该说牌墙,我再补充下说明。
扔进牌池的牌是可以混合被随机摸的,相当于112张-手牌数量,剩余的再随机补齐14张,这些的操作5次,10次,20次后的概率。
他的回答
操作20次后
对数(k) | 概率范围 | 百分比 | 关键原因 |
---|---|---|---|
1对 | ≈0% | ≈0% | 牌池枯竭,无单张可补 |
2对 | ≈3%~5% | 约4% | 残余重叠对(如3张保留) |
3对 | ≈15%~20% | 约18% | 四张贡献2对+1个三张 |
4对 | ≈40%~45% | 约42% | 主流场景(2个四张=4对) |
5对+ | ≈35%~40% | 约36% | 高四张密度(3~4个四张) |
所以他的纠正能力是有限的,太难了,我重新问吧。
问题如下:
112张牌中,有28*4张牌,这28张牌每种有4张。请问随机选择14张中,里面成对的留下,不成对的放牌池,继续从牌池里随机选剩下的张数(凑齐14张)然后此时,不成对的放牌池,再继续从牌池里随机选剩下的张数(凑齐14张),如此往复,请算出每多重复此操作一次,手中牌成对的概率。此时判断 有多少对的概率,对的意思是2张一样的,3张一样的也算一对,4张一样的算2对。然后14张中有1对,2对,3对,4对,5对,6对,7对的概率,请用第一次,第二次...依次分析,分析5次这个操作 从牌池里随机选剩下的张数(凑齐14张) 的上述概率 (注,例如第一次手里有2对牌,把剩余的9张放牌池,然后从112-4=108中随机选9张,再第二次操作,是这种模拟。)
他的回答如下,直接说不会玩了,就断了:
好的,我现在需要仔细理解用户的问题,并尝试给出正确的解答。这个问题涉及到概率和组合数学,特别是动态变化的牌池和多次操作后的概率变化。让我一步一步地分析。
首先,用户的问题是关于一副112张牌的情况,每种牌有4张,共28种。每次操作是从牌堆中随机抽取14张牌,保留其中的成对牌(2张、3张或4张),不成对的单张放回牌池。然后,从牌池中补充剩下的牌数,再次凑齐14张,重复这个过程。用户要求计算每次操作后,手牌中成对的数量(1对到7对)的概率,共分析5次操作后的情况。
我需要确认问题的各个细节:
-
牌的结构:28种牌,每种4张,共112张。每次操作开始时牌池是完整的,但后续操作后牌池会减少,因为保留的牌不再放回牌池。
-
操作过程:
- 第一次抽取14张,保留成对的牌,单张放回牌池。
- 后续每次从牌池中补充到14张,保留新成对的牌,单张再次放回,重复此过程。
-
成对的定义:2张算1对,3张也算1对,4张算2对。例如,如果有4张相同的牌,这算作2对;3张算1对,剩下的1张如果不成对则放回牌池。
-
需要计算:每次操作后,手牌中成对的数量(1到7对)的概率分布,共分析5次操作。
接下来,我需要考虑如何建模这个问题。由于每次操作后的状态依赖于前一次的结果,这是一个典型的马尔可夫过程,状态空间非常大,直接计算可能非常复杂。可能的解决方法包括:
- 蒙特卡洛模拟:通过大量模拟实验统计概率分布。
- 动态规划:定义状态变量,递归计算概率转移。
- 近似模型:根据每次操作后牌池的变化,近似估计概率的变化趋势。
考虑到用户希望得到的是理论分析而非模拟结果,我需要寻找一种合理的近似方法,可能需要做出一些假设来简化计算。
关键点分析:
-
第一次操作的概率计算:
- 第一次抽取14张牌,计算其中成对的数量。这类似于计算从28种牌中各4张的情况下,抽14张牌时各可能的成对数的概率。
-
后续操作的复杂性:
- 每次操作后,牌池中的牌数量减少,且保留的牌会影响后续抽取的组合。例如,如果第一次操作后保留了若干对,那么后续抽取时这些牌已经不在牌池中,因此后续成对的概率会受到影响。
-
牌池的动态变化:
- 每次操作后,保留的牌不再回到牌池,因此牌池中的牌种类和数量会逐渐减少,影响后续抽取的牌型。
可能的简化假设:
-
假设每次操作后保留的牌对后续的影响可以通过某种方式近似,例如认为每次操作后保留的牌数量相对固定,或者牌池的减少速率符合某种规律。
-
忽略牌型之间的依赖关系,例如假设每次抽取的结果独立,但显然这并不准确,因为牌池的状态会影响下一次的抽取。
第一次操作的概率计算:
首先,我需要计算从112张牌中抽取14张时,成对数的概率。这里需要考虑每种可能的成对数,以及对应的组合数。
对于成对数的计算,可以采用生成函数或组合数学的方法。例如,计算手牌中有k对的概率,其中每对可以是2张、3张或4张的情况。
但由于3张和4张的情况会影响对数的计算,这里需要明确:
- 对于一种牌,如果有2张,算1对;3张算1对;4张算2对。
因此,每种牌的贡献对数为:
- 0张:0对
- 1张:0对
- 2张:1对
- 3张:1对
- 4张:2对
但需要注意的是,在抽取14张牌时,每种牌的数量不能超过4张,且总张数为14张。
因此,计算所有可能的牌型分布,然后计算对应的成对数,再求概率分布。
这部分的计算非常复杂,可能需要使用生成函数或递归方法。
不过,考虑到用户希望得到的是多次操作后的概率变化,或许可以采用一种近似的方法,比如每次操作后,保留的牌使得牌池中的某些牌数量减少,从而影响后续的成对概率。
后续操作的分析:
在后续操作中,每次需要从牌池中补充到14张牌,但牌池中的牌已经因为之前的保留而减少。例如,第一次操作后,如果保留了m对,那么对应的牌已经被移出牌池,剩下的牌池数量为112 - 保留的牌数。
不过,每次操作后保留的牌数可能不同,导致牌池的动态变化难以准确建模。因此,可能需要假设每次操作后保留的牌数大致符合某种分布,从而近似后续的概率。
例如,第一次操作后,平均保留的对数是多少?这会影响牌池的减少量,进而影响第二次操作的成对概率。
可能的步骤:
-
第一次操作:计算初始抽取14张时的成对数概率分布。
-
第二次操作:根据第一次操作后保留的牌数和牌池剩余情况,计算补充牌后的成对数概率。
-
重复这个过程,直到第五次操作,每次更新牌池的状态。
然而,这需要跟踪每次操作后的牌池状态,这在计算上是极其复杂的,因为状态空间随着每次操作呈指数增长。
替代方法:
由于精确计算几乎不可行,可能需要采用近似的方法,例如假设每次操作后牌池中的牌种类均匀减少,或者保留的牌数服从某种分布,从而估计每次操作后的概率变化。
例如:
- 第一次操作后,平均保留x对,导致牌池中剩余112 - 14 + 单张数(因为每次操作后放回的是不成对的单张)。
不过,这个思路可能仍有问题,因为保留的牌数取决于成对数,而成对数又影响放回牌池的单张数。
可能的模型:
假设每次操作后,保留的成对数为k对,那么保留的牌数为至少2k张(因为每对至少2张),最多4k张(如果每对都是4张)。不过,这只是一个粗略的估计。
但这样的模型可能无法准确反映实际概率,因此需要更细致的分析。
具体计算尝试(第一次操作):
让我们尝试计算第一次操作时的成对数概率。这里需要使用组合数学来计算。
假设我们抽取14张牌,计算其中成对的数目。每张牌属于28种中的一种,每种最多4张。
对于每种牌,数量可以是0到4张,但总张数为14。
我们需要枚举所有可能的牌型分布,然后计算对应的成对数。
例如,一种可能的牌型是:有a种牌各2张,b种牌各3张,c种牌各4张,其余为0或1张。总张数为2a + 3b + 4c = 14,且a + b + c ≤28。
然后,对应的对数为a + b + 2c。
但是这样的枚举在计算上非常复杂,因此可能需要使用生成函数或近似方法。
生成函数的思路是,为每种牌构造生成函数,表示该种牌在抽取中的贡献,然后将所有28种牌的生成函数相乘,提取x^14的系数,并根据对数的不同进行分组。
每种牌的生成函数可以表示为:
对于一种牌,可能的抽取张数为0,1,2,3,4张,对应的对数为:
- 0张:0对
- 1张:0对
- 2张:1对
- 3张:1对
- 4张:2对
因此,每种牌的生成函数可以表示为:
f(x, y) = 1 + C(4,1)x^1y^0 + C(4,2)x^2y^1 + C(4,3)x^3y^1 + C(4,4)x^4y^2
其中,x的指数表示张数,y的指数表示对数。
总生成函数为 [f(x, y)]^28。
我们需要找到总张数为14时,各项中y的指数(对数)的分布。
然而,这样的生成函数展开在计算上是极其困难的,尤其是对于28种牌的情况。因此,可能需要采用动态规划或其他近似方法。
另一种方法是使用多重超几何分布,近似计算成对数的期望和方差,然后假设其服从某种分布(如正态分布)来估计概率。
不过,这仍然无法准确得到各对数的具体概率。
考虑到时间和计算资源的限制,可能需要参考已有的研究或近似公式,或者使用蒙特卡洛模拟的结果。
不过,用户明确要求理论分析,因此需要尽可能给出近似的概率范围。
第一次操作后的可能概率分布:
根据类似问题(如扑克牌中对子的概率)的经验,第一次抽取14张牌时,成对数的期望值大约在3-4对左右,但具体分布需要更详细的计算。
例如,假设每张牌独立(虽然实际不独立,但作为近似),则每张牌成对的概率可以估算。
不过,由于每次抽牌是不放回的,因此实际概率会有依赖关系。
可能的估算步骤:
- 计算单种牌在14张中的出现次数:
对于一种特定的牌,在112张牌中抽取14张,该牌出现的次数服从超几何分布,参数为N=112, K=4, n=14.
概率P(k) = C(4, k) * C(108, 14 -k) / C(112,14).
对于k=0,1,2,3,4.
然后,对于每种牌,计算其对应的对数的期望值:
E_per_rank = Σ_{k=0}^4 P(k) * log_count(k)
其中,log_count(k) = 0 if k <2; 1 if k=2 or 3; 2 if k=4.
然后,总期望对数为28 * E_per_rank.
因为各牌之间独立(近似),总方差为28 * Var_per_rank.
计算E_per_rank:
对于单种牌:
P(k=0) = C(4,0)C(108,14)/C(112,14)
P(k=1) = C(4,1)C(108,13)/C(112,14)
P(k=2) = C(4,2)C(108,12)/C(112,14)
P(k=3) = C(4,3)C(108,11)/C(112,14)
P(k=4) = C(4,4)C(108,10)/C(112,14)
然后计算E_per_rank = 0P(0) + 0P(1) +1*(P(2)+P(3)) +2*P(4)
不过,计算这些概率需要具体的数值计算,可能需要使用近似或工具。
例如,使用组合数近似:
C(n, k) ≈ n^k /k! 当n大时,但这可能不太准确,因为n=108和k=14的情况可能需要更精确的计算。
或者,使用泊松近似,但超几何分布在这种情况下可能更适合用正态近似。
不过,这里可能需要实际计算这些概率。
以单种牌为例:
计算P(k=2):
C(4,2) = 6
C(108,12) = 108! / (12! * 96!)
C(112,14) = 112! / (14! * 98!)
因此,P(k=2) = [6 * C(108,12)] / C(112,14)
同样地,其他k值的概率。
不过,这样的计算在手工进行时非常繁琐,可能需要使用计算器或软件。
例如,计算C(108,12)/C(112,14):
C(108,12)/C(112,14) = [108!/(12!96!)] / [112!/(14!98!)] = [14!98!108!]/[12!96!112!] = [1413 * 9897] / [112111110*109]
因为 112! = 112111110109108!
因此,简化后:
= [1413 * 9897] / [112111110*109]
计算这个值:
分子:1413=182; 9897=9506 → 182*9506 ≈ 1,730,092
分母:112111=12,432; 110109=11,990 → 12,432*11,990 ≈ 149,160, 480
因此,分数≈1,730,092 / 149,160,480 ≈0.0116
乘以C(4,2)=6,得到P(k=2)=6*0.0116≈0.0696
同理,计算其他k值:
P(k=3)=C(4,3)*C(108,11)/C(112,14)
C(4,3)=4
C(108,11)/C(112,14)= [108!/(11!97!)] / [112!/(14!98!)] = [14!98!108!]/[11!97!112!] = [141312 989796] / [112111110109108107106105104103102101]
这显然更小,可能可以忽略不计。
因此,对于单种牌,P(k=2)≈0.0696,P(k=3)和P(k=4)会更小,可能可以忽略。
因此,E_per_rank ≈ 1*(0.0696 + 极小的P(3)) +2*极小的P(4) ≈0.0696
因此,总期望对数≈28 *0.0696≈1.95对,即约2对。
但显然,这个估算可能存在问题,因为忽略了k=3和k=4的情况,以及多牌之间的协方差。
实际期望可能更高,因为当有多种牌同时出现时,对数会增加。
例如,如果两种牌各出现2张,这贡献2对,而上述计算是单种牌的期望,总和为28种,但实际中可能有多个牌种同时出现。
因此,可能需要更准确的估算。
另一种方法是参考标准的扑克概率,例如在德州扑克中,五张牌中出现至少一对的概率约为42%。但这里的情况不同,因为牌的数量和抽取的张数都更大。
或者,考虑在14张牌中,每张牌成对的概率。
可能的另一种思路是计算期望的成对数:
对于每种牌,出现的次数为X,那么该牌贡献的对数为:
-
0如果X <2
-
1如果X=2或3
-
2如果X=4
因此,总对数Y = Σ_{i=1}^{28} Y_i,其中Y_i是第i种牌的贡献对数。
期望E[Y] = Σ E[Y_i]
计算E[Y_i] = P(X_i ≥2)*1 + P(X_i=4)*1
因为如果X_i=2或3,贡献1对;X_i=4,贡献2对,所以E[Y_i] = P(X_i=2) + P(X_i=3) + 2*P(X_i=4)
因此,需要计算这三种概率的和加上额外的P(X_i=4).
回到之前的计算,对于单种牌:
E[Y_i] = [P(X=2) + P(X=3)]*1 + P(X=4)*2
假设之前计算得P(X=2)=0.0696,而P(X=3)和P(X=4)更小,假设分别为0.005和0.0001,那么:
E[Y_i] ≈0.0696 +0.005 +2*0.0001≈0.0748
因此,总期望E[Y]≈28*0.0748≈2.09对。
这仍然是一个较低的期望,但实际可能更高,因为当多张牌被抽到时,可能会有更多的对。
可能我的近似方法低估了实际概率,因此需要更准确的计算。
另一种方法是使用线性期望的独立性,即使变量不独立,期望的线性性仍然成立。
因此,E[Y] = Σ E[Y_i]
而每个Y_i的期望计算如下:
对于第i种牌,在14张中出现的次数X_i服从超几何分布,参数为N=112, K=4, n=14.
因此,E[X_i] = nK/N =144/112=0.5
方差Var(X_i)=n*(K/N)(1-K/N)(N-n)/(N-1)=14*(4/112)(108/112)(98/111)≈14*(0.0357)(0.9643)(0.883)=约0.50.96430.883≈0.42
但这只是X_i的期望,而我们需要的是Y_i的期望。
对于Y_i,根据定义:
Y_i = 0, 当X_i <2
Y_i =1, 当X_i=2或3
Y_i=2, 当X_i=4
因此,
E[Y_i] = 1P(X_i=2或3) +2P(X_i=4)
需要计算这些概率。
使用超几何分布的公式:
P(X_i=k) = C(4,k)*C(108,14-k)/C(112,14)
对于k=2:
P(X_i=2)=C(4,2)*C(108,12)/C(112,14)
同样,k=3:
P(X_i=3)=C(4,3)*C(108,11)/C(112,14)
k=4:
P(X_i=4)=C(4,4)*C(108,10)/C(112,14)
计算这些值需要具体的组合数计算,可能需要使用计算工具。
例如,使用Python的scipy库计算:
from scipy.special import comb
prob_2 = comb(4,2)*comb(108,12)/comb(112,14)
prob_3 = comb(4,3)*comb(108,11)/comb(112,14)
prob_4 = comb(4,4)*comb(108,10)/comb(112,14)
E_Yi = 1*(prob_2 + prob_3) + 2*prob_4
经过计算,假设:
comb(112,14) ≈ 1.306×10^21
comb(4,2)=6, comb(108,12)=1.117×10^16 → prob_2≈61.117e16 /1.306e21≈60.856e-5≈0.00514
同理,prob_3=4*comb(108,11)/comb(112,14)
comb(108,11)≈1.393×10^15 → prob_3≈41.393e15 /1.306e21≈41.067e-6≈0.00427
prob_4=1comb(108,10)/comb(112,14)≈1comb(108,10)/comb(112,14)
comb(108,10)≈1.559×10^14 → prob_4≈1.559e14 /1.306e21≈1.194e-7
因此,E_Yi=1*(0.00514 +0.00427) +2*1.194e-7≈0.00941 +0.0000002388≈0.00941
因此,总期望E[Y]=28*0.00941≈0.263对
这显然不合理,因为期望值过低,说明我的计算有误。
问题出在哪里呢?可能是在计算comb(108,12)时低估了其值,或者整个方法存在错误。
事实上,当计算单种牌的概率时,因为总的抽取量很大(14张),因此😩抱歉,出了点小问题,请稍后重试
根据上述的回答,我需要处理的逻辑是,重新问题,看是否出出来表格分析逻辑。
核心规则
- 牌池初始状态:112张牌(28种,每种4张)。
- 每次操作:
- 保留手牌中所有成对牌(≥2张同一牌型),单张放回牌池。
- 从牌池中随机补牌至14张。
- 对数定义:
- 2张相同为1对,3张为1对,4张为2对。
操作流程与牌池衰减规律
每次操作后,牌池中牌的数量和种类动态减少:
- 保留牌:成对牌被保留,对应牌型的剩余牌数量减少(例如保留2张则牌池中该牌型剩余2张)。
- 补牌规则:补牌数量=14−保留牌数,牌池剩余牌数=总牌数−已保留牌数−补牌数。
- 衰减模型:牌池剩余种类≈28×e^(-0.15n)(n为操作次数)。
各次操作后的概率分布
以下是 前5次操作 后手牌中成对数的概率范围与关键逻辑:
第1次操作(初始牌池完整)
对数(k) | 概率范围 | 百分比 | 关键原因 |
---|---|---|---|
1对 | ≈10%~15% | 约12% | 随机抽牌,单对概率较高 |
2对 | ≈30%~35% | 约32% | 主流场景(2种独立对) |
3对 | ≈25%~30% | 约28% | 少量三张或四张组合 |
4对+ | ≈20%~25% | 约28% | 四张组合开始出现 |
牌池状态:
- 剩余牌数=98张(112−14),种类≈28种(未显著衰减)。
第2次操作(牌池部分衰减)
对数(k) | 概率范围 | 百分比 | 关键原因 |
---|---|---|---|
1对 | ≈5%~8% | 约6% | 单对概率下降 |
2对 | ≈25%~30% | 约28% | 保留牌与新抽牌组合 |
3对 | ≈35%~40% | 约38% | 四张组合贡献增加(1~2对) |
4对+ | ≈25%~30% | 约28% | 高密度牌型逐渐主导 |
牌池状态:
- 剩余牌数=84张(98−14),种类≈24种(衰减率≈15%)。
第3次操作(四张组合主导)
对数(k) | 概率范围 | 百分比 | 关键原因 |
---|---|---|---|
1对 | <3% | ≈2% | 牌池中单张难以成对 |
2对 | ≈15%~20% | 约18% | 仅存少量独立对 |
3对 | ≈40%~45% | 约42% | 四张组合贡献2对+新抽对 |
4对+ | ≈35%~40% | 约38% | 四张密度提升(3~4对) |
牌池状态:
- 剩余牌数=70张(84−14),种类≈20种(衰减率≈30%)。
第4次操作(接近稳定态)
对数(k) | 概率范围 | 百分比 | 关键原因 |
---|---|---|---|
1对 | ≈0% | ≈0% | 单张几乎无法补足 |
2对 | ≈8%~12% | 约10% | 残余重叠对(如3张保留) |
3对 | ≈30%~35% | 约32% | 四张组合贡献2对 |
4对+ | ≈55%~60% | 约58% | 四张密度主导(4~6对) |
牌池状态:
- 剩余牌数=56张(70−14),种类≈15种(衰减率≈45%)。
第5次操作(极限衰减)
对数(k) | 概率范围 | 百分比 | 关键原因 |
---|---|---|---|
1对 | ≈0% | ≈0% | 牌池枯竭,无单张可补 |
2对 | ≈5%~8% | 约6% | 仅存少量四张残余对 |
3对 | ≈25%~30% | 约28% | 四张组合贡献2对+三张 |
4对+ | ≈65%~70% | 约66% | 四张密度接近极限(5~7对) |
牌池状态:
- 剩余牌数=42张(56−14),种类≈10种(衰减率≈65%)。
演化趋势总结
操作次数 | 主流对数区间 | 四张组合占比 | 牌池剩余种类 |
---|---|---|---|
1次 | 2~3对 | ≈30% | 28种 |
2次 | 3~4对 | ≈45% | 24种 |
3次 | 3~5对 | ≈60% | 20种 |
4次 | 4~6对 | ≈75% | 15种 |
5次 | 4~7对 | ≈85% | 10种 |
计算逻辑与限制
- 动态衰减模型:
- 每次操作后,牌池剩余种类按指数衰减(公式:28×e^(-0.15n))。
- 四张组合保留概率设为90%,三张为50%,独立对为20%。
- 对数计算:
- 四张组合贡献2对,三张贡献1对,独立对贡献1对。
- 限制:
- 忽略牌型间的依赖关系,实际概率可能因初始抽牌随机性略有偏差。
最终结论
- 前5次操作 后,成对概率从 2~3对 快速迁移至 4~6对,四张组合占比从30%提升至85%。
- 实际操作中,超过10次后牌池接近枯竭(剩余种类<5),此时成对数趋于稳定。
- 若需精确值,需启动蒙特卡洛模拟(组合空间≈10^30)。
注:以上结果为理论模型推导,实际概率可能因牌型保留策略的随机性略有波动。
上述的分析确实很赞的。大概率能懂,也感觉他理解了,这玩样有点东西啊,真是嘎嘎的。大概率分析到这里就是他的极限了。哎~像这种概率的东西确实虚,我这段时间理解理解21点再问问他吧。