deepseek分析麻将中起始拿对的概率

一般打牌需要分析对手手里的成牌,或者对手手里有几对,这有助于我们算对方手牌。比如我们可以算出成对的概率是多少,然后再判断一局游戏有几个人打七小对。

问题:

136张牌中,有34*4张牌,这34张牌每种有4张。请问随机选择14张中,有多少对的概率,对的意思是2张一样的,3张一样的也算一对,4张一样的算2对。然后14张中有1对,2对,3对,4对,5对,6对,7对的概率?

答案是最后有个表格:

对数(k)概率范围百分比主要构成场景
1对≈35%~45%约40%1个三张 + 单张,或1个两对
2对≈25%~35%约30%2个两对,或1个四张
3对≈15%~25%约20%3个两对,或1个四张+1个两对
4对≈5%~15%约10%4个两对,或2个四张
5对≈1%~5%约3%高概率需包含多个四张/三张
6对<1%约0.5%需至少3个四张或复杂组合
7对接近0%<0.1%极罕见(需4个四张+其他组合)

对于上述的逻辑,感觉其思考的确实很复杂,因为对于3张牌一样的,只算一对,这是个条件,所以他所有的都把这个逻辑算上,加上4个又算2对,更麻了。然后不管怎么样我选择信任这个数据。

但是在现实麻将中的数据不知道更高还是更低,因为毕竟麻将会随机最后的成牌打牌,扔进麻将机后会出现一些相同的逻辑。如何考虑这个逻辑是比较复杂的,感觉还是要高的。但都不成对的概率看上面的分析是没有的。减去上面这些好像多大概率了。

继续分析,上面是包括东南西北发白这些字牌的概率,如果没有字牌的话,怎么算了。

问答:

112张牌中,有28*4张牌,这28张牌每种有4张。请问随机选择14张中,有多少对的概率,对的意思是2张一样的,3张一样的也算一对,4张一样的算2对。然后14张中有1对,2对,3对,4对,5对,6对,7对的概率

对数(k)概率范围百分比典型构成场景
1对≈25%~35%约30%1个三张 + 单张,或1个两对
2对≈30%~40%约35%2个两对,或1个四张
3对≈20%~30%约25%3个两对,或1个四张+1个两对
4对≈10%~20%约15%4个两对,或2个四张
5对≈5%~10%约7%高概率需包含多个四张/三张
6对≈1%~5%约3%需至少3个四张或复杂组合
7对<1%约0.3%极罕见(需4个四张+其他组合)

这个数据就是打红中麻将的数据,其实出现3对的概率25%,还是很高的。甚至如果是四川麻将的话,就会平均有3对以上,这才是正常数据,因为会考虑到换三张和单色定缺,这是很明了的了。对于这样的概率,我在想怎么描述让其分析,或者大概分析,我再理理。

问答:

112张牌中,有28*4张牌,这28张牌每种有4张。请问随机选择14张中,随机里面挑选不成对的3张,再随机从剩余牌中选3张,此时判断 有多少对的概率,对的意思是2张一样的,3张一样的也算一对,4张一样的算2对。然后14张中有1对,2对,3对,4对,5对,6对,7对的概率

对数(k)概率范围百分比典型构成场景
1对≈20%~30%约25%初始3张不成对,后续仅1个两对
2对≈25%~35%约30%初始3张 + 后续1个两对 + 1个三张
3对≈20%~30%约25%后续出现2个两对或1个四张
4对≈10%~20%约15%后续2个四张或3个两对
5对≈5%~10%约7%后续3个四张或混合组合
6对≈1%~5%约3%极端组合(如4个四张)
7对<1%约0.2%理论极限(需5个四张)

感觉和上面概率是一样的,如果换6张会不会提高,我看看

问答:

112张牌中,有28*4张牌,这28张牌每种有4张。请问随机选择14张中,随机里面挑选不成对的6张,再随机从剩余牌中选6张,此时判断 有多少对的概率,对的意思是2张一样的,3张一样的也算一对,4张一样的算2对。然后14张中有1对,2对,3对,4对,5对,6对,7对的概率‌

对数(k)概率范围百分比典型构成场景
1对≈15%~25%约20%后续8张中形成1个独立对或与前6张重叠1对
2对≈25%~35%约30%后续8张中2个独立对或1对重叠+1个独立对
3对≈20%~30%约25%后续8张中3个独立对或混合重叠对
4对≈10%~20%约15%后续8张中1个四张(2对) + 2个独立对
5对≈5%~10%约7%后续8张中2个四张或高重叠组合
6对≈1%~5%约3%极端组合(如3个四张)
7对<1%约0.2%理论极限(需4个四张)

感觉看不出来,他是个近似的逻辑,太夸张了,也就是说deepseek并没有想象中的无敌,就算他理解了很多东西,那我就让他不断的选,选择3次后所有成对的概率。

112张牌中,有28*4张牌,这28张牌每种有4张。请问随机选择14张中,里面成对的留下,不成对的放牌池,继续从牌池里随机选剩下的张数(凑齐14张)然后此时,不成对的放牌池,再继续从牌池里随机选剩下的张数(凑齐14张),如此往复,请算出每多重复此操作一次,手中牌成对的概率。此时判断 有多少对的概率,对的意思是2张一样的,3张一样的也算一对,4张一样的算2对。然后14张中有1对,2对,3对,4对,5对,6对,7对的概率‌,请用第一次,第二次...依次分析,分析5次这个操作 从牌池里随机选剩下的张数(凑齐14张) 的上述概率

回答如下:

核心逻辑

1. 牌池动态变化
  • 保留规则‌:成对牌(2张、3张、4张)被保留,单张放回牌池。
  • 牌池衰减‌:随着操作次数增加,牌池中可用牌种类减少(部分牌被永久保留),导致后续成对概率下降。
2. 概率计算难点
  • 状态依赖‌:每次操作后的概率分布依赖于前一次保留的牌型和牌池剩余情况。
  • 组合爆炸‌:需跟踪所有可能的牌型组合,计算复杂度极高,需借助概率递推或蒙特卡洛模拟。

分阶段概率分析(近似范围)

第一次操作(初始抽取)
对数(k)概率范围百分比说明
1对≈12%~18%约15%低概率因初始随机性高
2对≈25%~30%约27%峰值区域,易形成2~3个独立对
3对≈20%~25%约22%中等组合(3对+单张)
4对≈15%~20%约18%可能出现1个四张(2对)
5对+≈10%~15%约18%高重复组合概率低

逻辑‌:初始牌池完整,成对概率由组合数主导,峰值在2~3对。


第二次操作(补牌后)
对数(k)概率范围百分比说明
1对≈10%~15%约13%牌池减少,独立对概率下降
2对≈20%~25%约23%保留牌可能贡献重叠对
3对≈25%~30%约28%新峰值,补牌填补单张形成对
4对≈18%~23%约20%保留牌中四张比例上升
5对+≈12%~17%约16%高对数受限于牌池衰减

逻辑‌:补牌时优先填补单张,保留牌可能形成四张(2对),3对概率上升。


第三次操作
对数(k)概率范围百分比说明
1对≈8%~12%约10%牌池进一步减少
2对≈18%~22%约20%独立对减少,依赖重叠对
3对≈30%~35%约32%新峰值,保留牌中四张贡献2对
4对≈20%~25%约22%四张组合占比显著上升
5对+≈15%~20%约16%高对数概率因四张累积

逻辑‌:保留牌中的四张开始主导对数(2对/四张),3~4对成为主要分布。


第四次操作
对数(k)概率范围百分比说明
1对≈5%~8%约6%牌池接近枯竭
2对≈15%~18%约16%依赖保留牌中的重叠对
3对≈35%~40%约37%四张组合主导(如2个四张)
4对≈25%~30%约28%四张累积效应显著
5对+≈13%~18%约13%极端组合概率有限

逻辑‌:牌池中可用牌种类大幅减少,四张组合占比超过50%。


第五次操作
对数(k)概率范围百分比说明
1对≈2%~5%约3%仅少数单张可补
2对≈10%~15%约12%依赖前期保留的四张
3对≈40%~45%约42%3~4个四张组合主导
4对≈30%~35%约33%四张占比接近极限
5对+≈8%~12%约10%牌池枯竭限制更高对数

逻辑‌:牌池中可用牌极少,成对完全由保留的四张贡献,3~4对占绝对优势。


总结规律

  1. 对数峰值迁移‌:
    • 初始阶段以 ‌2~3对‌ 为主,补牌后逐渐向 ‌3~4对‌ 集中。
    • 第3次操作后,四张组合(2对/四张)成为主导。
  2. 高对数衰减‌:
    • 因牌池衰减,7对概率始终低于 ‌0.1%‌,5对以上需极端牌型支持。
  3. 操作建议‌:
    • 若需精确值,需通过 ‌蒙特卡洛模拟‌ 或 ‌动态规划递推‌ 实现。
    • 工程中可近似认为:‌每多一次操作,3~4对概率上升10%~15%‌,其他区域同步下降

上述回答确实是有算的,不是忽悠我的结果吧,最起码一直换成多对以上的概率高,那么我让他一直换,换20次,成七对的概率看看是多少。

给出20次后成对概率?

 deepseek给的回答是如下的:

动态演化规律(关键结论)

经过20次操作后,牌池中可用牌种类和数量大幅减少,成对概率趋于稳定状态。
以下是 ‌第20次操作后‌ 的近似概率分布:

对数(k)概率范围百分比说明
1对<0.1%≈0%牌池枯竭,单张无法补足
2对≈5%~8%约6%仅存少量独立对或重叠对
3对≈15%~20%约18%保留牌中四张贡献2对
4对≈35%~40%约38%主流场景(2个四张=4对)
5对≈25%~30%约28%3个四张(6对) + 1个三张
6对≈8%~12%约9%极端组合(4个四张)
7对<0.01%≈0%理论极限无法达成

演化逻辑(第1~20次操作趋势)

  1. 牌池衰减‌:

    • 前5次‌:牌池快速减少,独立对概率下降,四张组合占比上升。
    • 第10次‌:牌池中可用牌种类≤10种,四张组合主导对数(3~5对概率>60%)。
    • 第20次‌:牌池接近枯竭,补牌只能依赖已保留牌型的剩余牌,四张组合占比>80%。
  2. 对数迁移‌:

    • 初始阶段‌(1~5次):2~3对为主(概率峰值约30%)。
    • 中期阶段‌(6~15次):4~5对为主(概率峰值约45%)。
    • 后期阶段‌(16~20次):4~6对为主(概率峰值约55%)。
  3. 极限场景‌:

    • 若操作无限次,所有牌最终被保留为四张(28种×4张=112张),此时手牌中最多有 ‌14对‌(14张牌全为四张中的2对)。
    • 但实际操作中,牌池会在约25次后完全枯竭(无法补牌)。

他的这个分析,我感觉出问题了,他没有理解到一些东西,他说 牌池会在约25次后完全枯竭(无法补牌) 可是我一共是112张啊,牌牌池的可继续选择的。是不是应该说牌墙,我再补充下说明。

扔进牌池的牌是可以混合被随机摸的,相当于112张-手牌数量,剩余的再随机补齐14张,这些的操作5次,10次,20次后的概率。

他的回答

 操作20次后
对数(k)概率范围百分比关键原因
1对≈0%≈0%牌池枯竭,无单张可补
2对≈3%~5%约4%残余重叠对(如3张保留)
3对≈15%~20%约18%四张贡献2对+1个三张
4对≈40%~45%约42%主流场景(2个四张=4对)
5对+≈35%~40%约36%高四张密度(3~4个四张)

所以他的纠正能力是有限的,太难了,我重新问吧。 

问题如下:

112张牌中,有28*4张牌,这28张牌每种有4张。请问随机选择14张中,里面成对的留下,不成对的放牌池,继续从牌池里随机选剩下的张数(凑齐14张)然后此时,不成对的放牌池,再继续从牌池里随机选剩下的张数(凑齐14张),如此往复,请算出每多重复此操作一次,手中牌成对的概率。此时判断 有多少对的概率,对的意思是2张一样的,3张一样的也算一对,4张一样的算2对。然后14张中有1对,2对,3对,4对,5对,6对,7对的概率‌,请用第一次,第二次...依次分析,分析5次这个操作 从牌池里随机选剩下的张数(凑齐14张) 的上述概率 (注,例如第一次手里有2对牌,把剩余的9张放牌池,然后从112-4=108中随机选9张,再第二次操作,是这种模拟。)

他的回答如下,直接说不会玩了,就断了:

好的,我现在需要仔细理解用户的问题,并尝试给出正确的解答。这个问题涉及到概率和组合数学,特别是动态变化的牌池和多次操作后的概率变化。让我一步一步地分析。

首先,用户的问题是关于一副112张牌的情况,每种牌有4张,共28种。每次操作是从牌堆中随机抽取14张牌,保留其中的成对牌(2张、3张或4张),不成对的单张放回牌池。然后,从牌池中补充剩下的牌数,再次凑齐14张,重复这个过程。用户要求计算每次操作后,手牌中成对的数量(1对到7对)的概率,共分析5次操作后的情况。

我需要确认问题的各个细节:

  1. 牌的结构‌:28种牌,每种4张,共112张。每次操作开始时牌池是完整的,但后续操作后牌池会减少,因为保留的牌不再放回牌池。

  2. 操作过程‌:

    • 第一次抽取14张,保留成对的牌,单张放回牌池。
    • 后续每次从牌池中补充到14张,保留新成对的牌,单张再次放回,重复此过程。
  3. 成对的定义‌:2张算1对,3张也算1对,4张算2对。例如,如果有4张相同的牌,这算作2对;3张算1对,剩下的1张如果不成对则放回牌池。

  4. 需要计算‌:每次操作后,手牌中成对的数量(1到7对)的概率分布,共分析5次操作。

接下来,我需要考虑如何建模这个问题。由于每次操作后的状态依赖于前一次的结果,这是一个典型的马尔可夫过程,状态空间非常大,直接计算可能非常复杂。可能的解决方法包括:

  • 蒙特卡洛模拟‌:通过大量模拟实验统计概率分布。
  • 动态规划‌:定义状态变量,递归计算概率转移。
  • 近似模型‌:根据每次操作后牌池的变化,近似估计概率的变化趋势。

考虑到用户希望得到的是理论分析而非模拟结果,我需要寻找一种合理的近似方法,可能需要做出一些假设来简化计算。

关键点分析‌:

  1. 第一次操作的概率计算‌:

    • 第一次抽取14张牌,计算其中成对的数量。这类似于计算从28种牌中各4张的情况下,抽14张牌时各可能的成对数的概率。
  2. 后续操作的复杂性‌:

    • 每次操作后,牌池中的牌数量减少,且保留的牌会影响后续抽取的组合。例如,如果第一次操作后保留了若干对,那么后续抽取时这些牌已经不在牌池中,因此后续成对的概率会受到影响。
  3. 牌池的动态变化‌:

    • 每次操作后,保留的牌不再回到牌池,因此牌池中的牌种类和数量会逐渐减少,影响后续抽取的牌型。

可能的简化假设‌:

  • 假设每次操作后保留的牌对后续的影响可以通过某种方式近似,例如认为每次操作后保留的牌数量相对固定,或者牌池的减少速率符合某种规律。

  • 忽略牌型之间的依赖关系,例如假设每次抽取的结果独立,但显然这并不准确,因为牌池的状态会影响下一次的抽取。

第一次操作的概率计算‌:

首先,我需要计算从112张牌中抽取14张时,成对数的概率。这里需要考虑每种可能的成对数,以及对应的组合数。

对于成对数的计算,可以采用生成函数或组合数学的方法。例如,计算手牌中有k对的概率,其中每对可以是2张、3张或4张的情况。

但由于3张和4张的情况会影响对数的计算,这里需要明确:

  • 对于一种牌,如果有2张,算1对;3张算1对;4张算2对。

因此,每种牌的贡献对数为:

  • 0张:0对
  • 1张:0对
  • 2张:1对
  • 3张:1对
  • 4张:2对

但需要注意的是,在抽取14张牌时,每种牌的数量不能超过4张,且总张数为14张。

因此,计算所有可能的牌型分布,然后计算对应的成对数,再求概率分布。

这部分的计算非常复杂,可能需要使用生成函数或递归方法。

不过,考虑到用户希望得到的是多次操作后的概率变化,或许可以采用一种近似的方法,比如每次操作后,保留的牌使得牌池中的某些牌数量减少,从而影响后续的成对概率。

后续操作的分析‌:

在后续操作中,每次需要从牌池中补充到14张牌,但牌池中的牌已经因为之前的保留而减少。例如,第一次操作后,如果保留了m对,那么对应的牌已经被移出牌池,剩下的牌池数量为112 - 保留的牌数。

不过,每次操作后保留的牌数可能不同,导致牌池的动态变化难以准确建模。因此,可能需要假设每次操作后保留的牌数大致符合某种分布,从而近似后续的概率。

例如,第一次操作后,平均保留的对数是多少?这会影响牌池的减少量,进而影响第二次操作的成对概率。

可能的步骤‌:

  1. 第一次操作‌:计算初始抽取14张时的成对数概率分布。

  2. 第二次操作‌:根据第一次操作后保留的牌数和牌池剩余情况,计算补充牌后的成对数概率。

  3. 重复这个过程‌,直到第五次操作,每次更新牌池的状态。

然而,这需要跟踪每次操作后的牌池状态,这在计算上是极其复杂的,因为状态空间随着每次操作呈指数增长。

替代方法‌:

由于精确计算几乎不可行,可能需要采用近似的方法,例如假设每次操作后牌池中的牌种类均匀减少,或者保留的牌数服从某种分布,从而估计每次操作后的概率变化。

例如:

  • 第一次操作后,平均保留x对,导致牌池中剩余112 - 14 + 单张数(因为每次操作后放回的是不成对的单张)。

不过,这个思路可能仍有问题,因为保留的牌数取决于成对数,而成对数又影响放回牌池的单张数。

可能的模型‌:

假设每次操作后,保留的成对数为k对,那么保留的牌数为至少2k张(因为每对至少2张),最多4k张(如果每对都是4张)。不过,这只是一个粗略的估计。

但这样的模型可能无法准确反映实际概率,因此需要更细致的分析。

具体计算尝试(第一次操作)‌:

让我们尝试计算第一次操作时的成对数概率。这里需要使用组合数学来计算。

假设我们抽取14张牌,计算其中成对的数目。每张牌属于28种中的一种,每种最多4张。

对于每种牌,数量可以是0到4张,但总张数为14。

我们需要枚举所有可能的牌型分布,然后计算对应的成对数。

例如,一种可能的牌型是:有a种牌各2张,b种牌各3张,c种牌各4张,其余为0或1张。总张数为2a + 3b + 4c = 14,且a + b + c ≤28。

然后,对应的对数为a + b + 2c。

但是这样的枚举在计算上非常复杂,因此可能需要使用生成函数或近似方法。

生成函数的思路是,为每种牌构造生成函数,表示该种牌在抽取中的贡献,然后将所有28种牌的生成函数相乘,提取x^14的系数,并根据对数的不同进行分组。

每种牌的生成函数可以表示为:

对于一种牌,可能的抽取张数为0,1,2,3,4张,对应的对数为:

  • 0张:0对
  • 1张:0对
  • 2张:1对
  • 3张:1对
  • 4张:2对

因此,每种牌的生成函数可以表示为:

f(x, y) = 1 + C(4,1)x^1y^0 + C(4,2)x^2y^1 + C(4,3)x^3y^1 + C(4,4)x^4y^2

其中,x的指数表示张数,y的指数表示对数。

总生成函数为 [f(x, y)]^28。

我们需要找到总张数为14时,各项中y的指数(对数)的分布。

然而,这样的生成函数展开在计算上是极其困难的,尤其是对于28种牌的情况。因此,可能需要采用动态规划或其他近似方法。

另一种方法是使用多重超几何分布,近似计算成对数的期望和方差,然后假设其服从某种分布(如正态分布)来估计概率。

不过,这仍然无法准确得到各对数的具体概率。

考虑到时间和计算资源的限制,可能需要参考已有的研究或近似公式,或者使用蒙特卡洛模拟的结果。

不过,用户明确要求理论分析,因此需要尽可能给出近似的概率范围。

第一次操作后的可能概率分布‌:

根据类似问题(如扑克牌中对子的概率)的经验,第一次抽取14张牌时,成对数的期望值大约在3-4对左右,但具体分布需要更详细的计算。

例如,假设每张牌独立(虽然实际不独立,但作为近似),则每张牌成对的概率可以估算。

不过,由于每次抽牌是不放回的,因此实际概率会有依赖关系。

可能的估算步骤‌:

  1. 计算单种牌在14张中的出现次数‌:

对于一种特定的牌,在112张牌中抽取14张,该牌出现的次数服从超几何分布,参数为N=112, K=4, n=14.

概率P(k) = C(4, k) * C(108, 14 -k) / C(112,14).

对于k=0,1,2,3,4.

然后,对于每种牌,计算其对应的对数的期望值:

E_per_rank = Σ_{k=0}^4 P(k) * log_count(k)

其中,log_count(k) = 0 if k <2; 1 if k=2 or 3; 2 if k=4.

然后,总期望对数为28 * E_per_rank.

因为各牌之间独立(近似),总方差为28 * Var_per_rank.

计算E_per_rank:

对于单种牌:

P(k=0) = C(4,0)C(108,14)/C(112,14)
P(k=1) = C(4,1)C(108,13)/C(112,14)
P(k=2) = C(4,2)C(108,12)/C(112,14)
P(k=3) = C(4,3)C(108,11)/C(112,14)
P(k=4) = C(4,4)C(108,10)/C(112,14)

然后计算E_per_rank = 0P(0) + 0P(1) +1*(P(2)+P(3)) +2*P(4)

不过,计算这些概率需要具体的数值计算,可能需要使用近似或工具。

例如,使用组合数近似:

C(n, k) ≈ n^k /k! 当n大时,但这可能不太准确,因为n=108和k=14的情况可能需要更精确的计算。

或者,使用泊松近似,但超几何分布在这种情况下可能更适合用正态近似。

不过,这里可能需要实际计算这些概率。

以单种牌为例:

计算P(k=2):

C(4,2) = 6
C(108,12) = 108! / (12! * 96!)
C(112,14) = 112! / (14! * 98!)

因此,P(k=2) = [6 * C(108,12)] / C(112,14)

同样地,其他k值的概率。

不过,这样的计算在手工进行时非常繁琐,可能需要使用计算器或软件。

例如,计算C(108,12)/C(112,14):

C(108,12)/C(112,14) = [108!/(12!96!)] / [112!/(14!98!)] = [14!98!108!]/[12!96!112!] = [1413 * 9897] / [112111110*109]

因为 112! = 112111110109108!

因此,简化后:

= [1413 * 9897] / [112111110*109]

计算这个值:

分子:1413=182; 9897=9506 → 182*9506 ≈ 1,730,092

分母:112111=12,432; 110109=11,990 → 12,432*11,990 ≈ 149,160, 480

因此,分数≈1,730,092 / 149,160,480 ≈0.0116

乘以C(4,2)=6,得到P(k=2)=6*0.0116≈0.0696

同理,计算其他k值:

P(k=3)=C(4,3)*C(108,11)/C(112,14)

C(4,3)=4

C(108,11)/C(112,14)= [108!/(11!97!)] / [112!/(14!98!)] = [14!98!108!]/[11!97!112!] = [141312 989796] / [112111110109108107106105104103102101]

这显然更小,可能可以忽略不计。

因此,对于单种牌,P(k=2)≈0.0696,P(k=3)和P(k=4)会更小,可能可以忽略。

因此,E_per_rank ≈ 1*(0.0696 + 极小的P(3)) +2*极小的P(4) ≈0.0696

因此,总期望对数≈28 *0.0696≈1.95对,即约2对。

但显然,这个估算可能存在问题,因为忽略了k=3和k=4的情况,以及多牌之间的协方差。

实际期望可能更高,因为当有多种牌同时出现时,对数会增加。

例如,如果两种牌各出现2张,这贡献2对,而上述计算是单种牌的期望,总和为28种,但实际中可能有多个牌种同时出现。

因此,可能需要更准确的估算。

另一种方法是参考标准的扑克概率,例如在德州扑克中,五张牌中出现至少一对的概率约为42%。但这里的情况不同,因为牌的数量和抽取的张数都更大。

或者,考虑在14张牌中,每张牌成对的概率。

可能的另一种思路是计算期望的成对数:

对于每种牌,出现的次数为X,那么该牌贡献的对数为:

  • 0如果X <2

  • 1如果X=2或3

  • 2如果X=4

因此,总对数Y = Σ_{i=1}^{28} Y_i,其中Y_i是第i种牌的贡献对数。

期望E[Y] = Σ E[Y_i]

计算E[Y_i] = P(X_i ≥2)*1 + P(X_i=4)*1

因为如果X_i=2或3,贡献1对;X_i=4,贡献2对,所以E[Y_i] = P(X_i=2) + P(X_i=3) + 2*P(X_i=4)

因此,需要计算这三种概率的和加上额外的P(X_i=4).

回到之前的计算,对于单种牌:

E[Y_i] = [P(X=2) + P(X=3)]*1 + P(X=4)*2

假设之前计算得P(X=2)=0.0696,而P(X=3)和P(X=4)更小,假设分别为0.005和0.0001,那么:

E[Y_i] ≈0.0696 +0.005 +2*0.0001≈0.0748

因此,总期望E[Y]≈28*0.0748≈2.09对。

这仍然是一个较低的期望,但实际可能更高,因为当多张牌被抽到时,可能会有更多的对。

可能我的近似方法低估了实际概率,因此需要更准确的计算。

另一种方法是使用线性期望的独立性,即使变量不独立,期望的线性性仍然成立。

因此,E[Y] = Σ E[Y_i]

而每个Y_i的期望计算如下:

对于第i种牌,在14张中出现的次数X_i服从超几何分布,参数为N=112, K=4, n=14.

因此,E[X_i] = nK/N =144/112=0.5

方差Var(X_i)=n*(K/N)(1-K/N)(N-n)/(N-1)=14*(4/112)(108/112)(98/111)≈14*(0.0357)(0.9643)(0.883)=约0.50.96430.883≈0.42

但这只是X_i的期望,而我们需要的是Y_i的期望。

对于Y_i,根据定义:

Y_i = 0, 当X_i <2

Y_i =1, 当X_i=2或3

Y_i=2, 当X_i=4

因此,

E[Y_i] = 1P(X_i=2或3) +2P(X_i=4)

需要计算这些概率。

使用超几何分布的公式:

P(X_i=k) = C(4,k)*C(108,14-k)/C(112,14)

对于k=2:

P(X_i=2)=C(4,2)*C(108,12)/C(112,14)

同样,k=3:

P(X_i=3)=C(4,3)*C(108,11)/C(112,14)

k=4:

P(X_i=4)=C(4,4)*C(108,10)/C(112,14)

计算这些值需要具体的组合数计算,可能需要使用计算工具。

例如,使用Python的scipy库计算:

from scipy.special import comb

prob_2 = comb(4,2)*comb(108,12)/comb(112,14)
prob_3 = comb(4,3)*comb(108,11)/comb(112,14)
prob_4 = comb(4,4)*comb(108,10)/comb(112,14)

E_Yi = 1*(prob_2 + prob_3) + 2*prob_4

经过计算,假设:

comb(112,14) ≈ 1.306×10^21

comb(4,2)=6, comb(108,12)=1.117×10^16 → prob_2≈61.117e16 /1.306e21≈60.856e-5≈0.00514

同理,prob_3=4*comb(108,11)/comb(112,14)

comb(108,11)≈1.393×10^15 → prob_3≈41.393e15 /1.306e21≈41.067e-6≈0.00427

prob_4=1comb(108,10)/comb(112,14)≈1comb(108,10)/comb(112,14)

comb(108,10)≈1.559×10^14 → prob_4≈1.559e14 /1.306e21≈1.194e-7

因此,E_Yi=1*(0.00514 +0.00427) +2*1.194e-7≈0.00941 +0.0000002388≈0.00941

因此,总期望E[Y]=28*0.00941≈0.263对

这显然不合理,因为期望值过低,说明我的计算有误。

问题出在哪里呢?可能是在计算comb(108,12)时低估了其值,或者整个方法存在错误。

事实上,当计算单种牌的概率时,因为总的抽取量很大(14张),因此😩抱歉,出了点小问题,请稍后重试

根据上述的回答,我需要处理的逻辑是,重新问题,看是否出出来表格分析逻辑。

核心规则

  1. 牌池初始状态‌:112张牌(28种,每种4张)。
  2. 每次操作‌:
    • 保留手牌中所有成对牌(≥2张同一牌型),单张放回牌池。
    • 从牌池中随机补牌至14张。
  3. 对数定义‌:
    • 2张相同为1对,3张为1对,4张为2对。

操作流程与牌池衰减规律

每次操作后,牌池中牌的数量和种类动态减少:

  • 保留牌‌:成对牌被保留,对应牌型的剩余牌数量减少(例如保留2张则牌池中该牌型剩余2张)。
  • 补牌规则‌:补牌数量=14−保留牌数,牌池剩余牌数=总牌数−已保留牌数−补牌数。
  • 衰减模型‌:牌池剩余种类≈28×e^(-0.15n)(n为操作次数)。

各次操作后的概率分布

以下是 ‌前5次操作‌ 后手牌中成对数的概率范围与关键逻辑:

第1次操作(初始牌池完整)
对数(k)概率范围百分比关键原因
1对≈10%~15%约12%随机抽牌,单对概率较高
2对≈30%~35%约32%主流场景(2种独立对)
3对≈25%~30%约28%少量三张或四张组合
4对+≈20%~25%约28%四张组合开始出现

牌池状态‌:

  • 剩余牌数=98张(112−14),种类≈28种(未显著衰减)。

第2次操作(牌池部分衰减)
对数(k)概率范围百分比关键原因
1对≈5%~8%约6%单对概率下降
2对≈25%~30%约28%保留牌与新抽牌组合
3对≈35%~40%约38%四张组合贡献增加(1~2对)
4对+≈25%~30%约28%高密度牌型逐渐主导

牌池状态‌:

  • 剩余牌数=84张(98−14),种类≈24种(衰减率≈15%)。

第3次操作(四张组合主导)
对数(k)概率范围百分比关键原因
1对<3%≈2%牌池中单张难以成对
2对≈15%~20%约18%仅存少量独立对
3对≈40%~45%约42%四张组合贡献2对+新抽对
4对+≈35%~40%约38%四张密度提升(3~4对)

牌池状态‌:

  • 剩余牌数=70张(84−14),种类≈20种(衰减率≈30%)。

第4次操作(接近稳定态)
对数(k)概率范围百分比关键原因
1对≈0%≈0%单张几乎无法补足
2对≈8%~12%约10%残余重叠对(如3张保留)
3对≈30%~35%约32%四张组合贡献2对
4对+≈55%~60%约58%四张密度主导(4~6对)

牌池状态‌:

  • 剩余牌数=56张(70−14),种类≈15种(衰减率≈45%)。

第5次操作(极限衰减)
对数(k)概率范围百分比关键原因
1对≈0%≈0%牌池枯竭,无单张可补
2对≈5%~8%约6%仅存少量四张残余对
3对≈25%~30%约28%四张组合贡献2对+三张
4对+≈65%~70%约66%四张密度接近极限(5~7对)

牌池状态‌:

  • 剩余牌数=42张(56−14),种类≈10种(衰减率≈65%)。

演化趋势总结

操作次数主流对数区间四张组合占比牌池剩余种类
1次2~3对≈30%28种
2次3~4对≈45%24种
3次3~5对≈60%20种
4次4~6对≈75%15种
5次4~7对≈85%10种

计算逻辑与限制

  1. 动态衰减模型‌:
    • 每次操作后,牌池剩余种类按指数衰减(公式:28×e^(-0.15n))。
    • 四张组合保留概率设为90%,三张为50%,独立对为20%。
  2. 对数计算‌:
    • 四张组合贡献2对,三张贡献1对,独立对贡献1对。
  3. 限制‌:
    • 忽略牌型间的依赖关系,实际概率可能因初始抽牌随机性略有偏差。

最终结论

  • 前5次操作‌ 后,成对概率从 ‌2~3对‌ 快速迁移至 ‌4~6对‌,四张组合占比从30%提升至85%。
  • 实际操作中,超过10次后牌池接近枯竭(剩余种类<5),此时成对数趋于稳定。
  • 若需精确值,需启动蒙特卡洛模拟(组合空间≈10^30)。

‌:以上结果为理论模型推导,实际概率可能因牌型保留策略的随机性略有波动。

上述的分析确实很赞的。大概率能懂,也感觉他理解了,这玩样有点东西啊,真是嘎嘎的。大概率分析到这里就是他的极限了。哎~像这种概率的东西确实虚,我这段时间理解理解21点再问问他吧。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值