【BZOJ】【P3527】【ZJOI2014】【力】【题解】【FFT】

传送门 www.lydsy.com/JudgeOnline/problem.php?id=3527

好久没写FFT了……全忘干净了……推完式子不会写FFT了……


============================================================

更正:倒数第三个式子应为 E[i]=sigma( f(j)g(j-i) )  -  sigma( f(n-j-1)g(j-i) )
下面两个式子也有类似错误.

============================================================


大概就是这样了,经过各种转换成了卷积的形式……然后FFT,重新学了一遍FFT,YM&学习了  pyc神犇的FFT,

Code:

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=1000010;
int n,N,L;
int rev[maxn];
int dig[maxn];
double p[maxn];
struct cp{
	double r,i;
	cp(double _r=0,double _i=0):
		r(_r),i(_i){}
	cp operator+(cp x){return cp(r+x.r,i+x.i);}
	cp operator-(cp x){return cp(r-x.r,i-x.i);}
	cp operator*(cp x){return cp(r*x.r-i*x.i,r*x.i+i*x.r);}
};
cp a[maxn],b[maxn],c[maxn],A[maxn],x,y;
void FFT(cp a[],int flag){
	for(int i=0;i<N;i++)A[i]=a[rev[i]];
	for(int i=0;i<N;i++)a[i]=A[i];
	for(int i=2;i<=N;i<<=1){
		cp wn(cos(2*M_PI/i),flag*sin(2*M_PI/i));
		for(int k=0;k<N;k+=i){
			cp w(1,0);
			for(int j=0;j<i/2;j++){
				x=a[k+j];
				y=w*a[k+j+i/2];
				a[k+j]=x+y;
				a[k+j+i/2]=x-y;
				w=w*wn;  
			}
		}
	}
	if(flag==-1)for(int i=0;i<N;i++)a[i].r/=N;
}
double anss[maxn];
int main(){
	scanf("%d",&n);
	for(int i=0;i<n;i++)scanf("%lf",&p[i]);
	for(L=0,N=1;N<n;N<<=1,L++);L++;N<<=1;
	for(int i=0;i<N;i++){
		int len=0;
		for(int t=i;t;t>>=1)dig[len++]=t&1;
		for(int j=0;j<L;j++)rev[i]=rev[i]*2+dig[j];
	}
	for(int i=0;i<n;i++)a[i]=cp(p[i],0);
	for(int i=1;i<n;i++)b[i]=cp(1.0/i/i,0);
	FFT(a,1);FFT(b,1);
	for(int i=0;i<N;i++)c[i]=a[i]*b[i];
	FFT(c,-1);
	for(int i=0;i<n;i++)anss[i]=c[i].r;
	memset(a,0,sizeof(a));
	memset(b,0,sizeof(b));
	for(int i=0;i<n;i++)a[i]=cp(p[n-i-1],0);
	for(int i=1;i<n;i++)b[i]=cp(1.0/i/i,0);
	FFT(a,1);FFT(b,1);
	for(int i=0;i<N;i++)c[i]=a[i]*b[i];
	FFT(c,-1);
	for(int i=0;i<n;i++)anss[i]-=c[n-i-1].r;
	for(int i=0;i<n;i++)
		printf("%.9f\n",anss[i]);
	return 0;
}


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值