最大公约数问题

最大公约数问题

提出问题:

写一个程序,求两个数的最大公约数(Greatest Common Divisor,GCD)。如果两个正整数都很大,有什么简单的算法吗?

例如,给定两个数1100 100 210 001,120 200 021,求出其最大公约数。


解法一:

求最大公约数是一个很基本的问题。早在公元前300年左右,欧几里得就给出了高效的解法—辗转相除法。

例如:F(42,30)=F(30,12)=F(12,6)=F(6,0)=6;

利用递归就能很轻松的解决这个问题,非递归算法也是很简洁。


int Gcd1(int x,int y)
{
	return (!y)?x:Gcd1(y,x%y);
}

int Gcd2(int x,int y)
{
	int temp;
	while(y)
	{
		temp=x%y;
		x=y;
		y=temp;
	}

	return x;
}

解法二:

在上面的解法中,我们用到了取模运算。但对于大整数而言,取模运算(其中用到除法)是非常昂贵的开销,将成为整个算法的瓶颈。有没有办法能够不用取模运算呢?其实F(x,y)=F(x-y,y),那么就可以转换成简单的多得大整数的减法运算。

例如:

F(42,30)=F(12,30)=F(30,12)=F(18,12)=F(6,12)=F(12,6)=F(6,6)=F(0,6)=F(6,0)=6;


int Gcd3(int x,int y)
{
	if(x<y)
		return Gcd3(y,x);//如果x<y,交换x,y,因为f(x,y)=f(y,x),从而避免
	if(y==0)	          //求一个正数和一个负数的最大公约数的情况出现
		return x;
	else
		return Gcd3(x-y,y);
}

这个算法免去了大整数除法的繁琐,但是同样也有不足之处:迭代次数明显增多了不少,如果遇到F(1000000000,1)这样的情况,估计就会栈溢出了。


解法三:

结合解法一以及解法二,就可以成为一个最佳的算法。

从分析公约数的特点入手:

对于x和y来说,如果y=k*y1,x=k*x1。那么就有F(y,x)=k*F(y1,x1);

另外,如果x=p*x1假设p为素数,并且y%p!=0,即y不能被p整除,那么F(x,y)=F(p*x1,y)=F(x1,y);

我们知道2是一个素数,而且计算机内可以很容易的将乘以2,除以2转换成移位运算。

若x,y均为偶数,F(x,y)=2*F(x/2,y/2)=2*F(x>>1,y>>1);

若x为偶数,y为奇数F(x,y)=F(x/2,y)=F(x>>1,y);

若x为奇数,y为偶数F(x,y)=F(x,y/2)=F(x,y>>1);

若x,y均为奇数F(x,y)=F(y,x-y),那么在F(x,y)=F(y,x-y)之后,(x-y)是一个偶数,下一步一定会有除以2的操作,因此最坏情况下的时间复杂度为O(log2(max(x,y)))。


int Gcd4(int x,int y)
{
	if(x<y)
		return Gcd4(y,x);
	if(y==0)
		return x;
	else
	{
		if(x%2==0)
		{
			if(y%2==0)
				return (Gcd4(x>>1,y>>1)>>1);
			else
				return Gcd4(x>>1,y);
		}
		else
		{
			if(y%2==0)
				return Gcd4(x,y>>1);
			else
				return Gcd4(x-y,y);
		}
	}
}



  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值