bzoj3505: [Cqoi2014]数三角形

首先共有(n+1)*(m+1)个点,所以先++n,++m

不考虑三点共线的情况,有(n*m)*(n*m-1)*(n*m-2)/6个

三点都在水平和竖直的有m*(m-1)*(m-2)*n/6+n*(n-1)*(n-2)*m/6个

然后考虑斜着的

枚举每个点作为第一个点,使后两个点坐标大于第一个

过第一个点做个水平和竖直的线,右上和左下的矩形可用

可用dp求出一个矩阵中第一个点在角上,三点共线的个数

#include <cstdio>
#include <algorithm>
using namespace std;
#define MAXN 1003
#define MAXP 170
int gcd(int x, int y)
{
    while (y)
    {
        int t = x % y;
        x = y;
        y = t;
    }
    return x;
}
int n, m;
int a[MAXN][MAXN], ct[MAXN][MAXN];
long long f[MAXN][MAXN];
int main()
{
    scanf("%d%d", &n, &m);
    ++n, ++m;
    for (int i = 1; i <= n; ++i)
        for (int j = 1; j <= m; ++j)
        {
            int g = gcd(i, j);
            int x = i / g, y = j / g;
            a[i][j] = ct[x][y]++;
        }
    for (int i = 1; i <= n; ++i)
        f[i][1] = f[i - 1][1] + a[i][1];
    for (int i = 1; i <= m; ++i)
        f[1][i] = f[1][i - 1] + a[1][i];
    for (int i = 2; i <= n; ++i)
        for (int j = 2; j <= m; ++j)
            f[i][j] = f[i - 1][j] + f[i][j - 1] - f[i - 1][j - 1] + a[i][j];
    int N = n * m;
    long long ans = (long long)N * (N - 1) * (N - 2) / 6;
    ans -= (long long)m * (m - 1) * (m - 2) / 6 * n + (long long)n * (n - 1) * (n - 2) / 6 * m;
    for (int i = 1; i <= n; ++i)
        for (int j = 1; j <= m; ++j)
            ans -= f[n - i][j - 1] + f[n - i][m - j];
    printf("%lld\n", ans);
    return 0;
}


阅读更多
文章标签: bzoj
相关热词: bzoj3505
上一篇bzoj1500: [NOI2005]维修数列
下一篇vim配置
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭