递归问题的延展(斐波那契数列专场)

1、跳台阶

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

solution    1:

递归解决,自顶而下

确定一次只能跳上1阶或2阶,类似于斐波那契数列的问题,要求n阶的跳法,只需确定了前两项的阶梯数后,依次往下递归求跳法

public int JumpFloor(int target) {

        if(target==0)

            return 0;

        else if(target==1)

            return 1;

        else if(target==2)

            return 2;

        else

            return JumpFloor(target-1)+JumpFloor(target-2);

    }

solution    2:

迭代解决,动态规划,自底而上

运用动态规划,从第3项开始,自前而后求前两项的跳法总数,最后算出n阶的跳法。

public int JumpFloor(int target) {

        if(target==0||target==1||target==2)

            return target;

        int jumpSum=0;

        int jumpBackPre=1;

        int jumpBackPrePre=2;

        for(int i=3;i<=target;i++){

            jumpSum=jumpBackPre+jumpBackPrePre;

            jumpBackPre=jumpBackPrePre;

            jumpBackPrePre=jumpSum;

        }

        return jumpSum;

    }

2、变态跳台阶

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

solution    1:

(纯数学问题,通过1,2,3阶台阶类比数列找规律)

关于本题,前提是n个台阶会有一次n阶的跳法。分析如下:

f(1) = 1

f(2) = f(2-1) + f(2-2)         //f(2-2) 表示2阶一次跳2阶的次数。

f(3) = f(3-1) + f(3-2) + f(3-3) 

...

f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n) 

 

说明: 

1)这里的f(n) 代表的是n个台阶有一次1,2,...n阶的 跳法数。

2)n = 1时,只有1种跳法,f(1) = 1

3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2) 

4) n = 3时,会有三种跳得方式,1阶、2阶、3阶,

    那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3)

    因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)

5) n = n时,会有n中跳的方式,1阶、2阶...n阶,得出结论:

    f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + ... + f(n-1)

    

6) 由以上已经是一种结论,但是为了简单,我们可以继续简化:

    f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)

    f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) = f(n-1) + f(n-1)

    可以得出:

    f(n) = 2*f(n-1)

    

7) 得出最终结论,在n阶台阶,一次有1、2、...n阶的跳的方式时,总得跳法为:

              | 1       ,(n=0 ) 

f(n) =     | 1       ,(n=1 )

              | 2*f(n-1),(n>=2)

具体实现(java):

public int JumpFloorII(int target) {

        if(target<=0)

            return -1;

        else if(target==1)

            return 1;

        else

            return 2*JumpFloorII(target-1);

    }

3、矩形覆盖

题目描述

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

solution    1:

依旧是斐波那契数列

2*n的大矩形,和n个2*1的小矩形

其中target*2为大矩阵的大小

有以下几种情形:

1⃣️target <= 0 大矩形为<= 2*0,直接return 1;

2⃣️target = 1大矩形为2*1,只有一种摆放方法,return1;

3⃣️target = 2 大矩形为2*2,有两种摆放方法,return2;

4⃣️target = n 分为两步考虑:

        第一次摆放一块 2*1 的小矩阵,则摆放方法总共为f(target - 1)

 

 

第一次摆放一块1*2的小矩阵,则摆放方法总共为f(target-2)

因为,摆放了一块1*2的小矩阵(用√√表示),对应下方的1*2(用××表示)摆放方法就确定了,所以为f(targte-2)

 

 

 

具体实现:

public int RectCover(int target) {

        if(target<=1)

            return target;

        if(target*2==2)

            return 1;

        if(target*2==4)

            return 2;

        else

            return RectCover(target-1)+RectCover(target-2);

    }

总结:

类似的斐波那契问题,都可以用数列的数学思想来推算,一个方法是递归,另一个方法是迭代(动态规划),递归/迭代都是求出前两项的确定结果,而后往后第n项就是求前两项的总和,或应用数学规律直接解决问题。

一般来说,迭代的时间复杂度都小于递归。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值