【Tarjan算法求 块(点双连通分量) O(n+m)】
割顶可以属于多个块中,而非割顶只能属于一个快,所以不能直接去掉割顶求块,而需要下面算法
#define rep(i,a,n) for(int i = a; i < n; i++)
#define repe(i,a,n) for(int i = a; i <= n; i++)
#define per(i,n,a) for(int i = n; i >= a; i--)
#define clc(a,b) memset(a,b,sizeof(a))
#define min(a,b) (a>b?b:a)
#define max(a,b) (a>b?a:b)
#define MAXN 10010
struct Edge{
int from,to;
Edge(int a = 0, int b = 0){from = a, to = b;}
};
int pre[MAXN], bccno[MAXN], bcc[MAXN],clock,bcc_cnt,n;
//bcc[1~n]存放当前块中的各个节点,bccno[1~n]标记每个节点所在块的编号
vector<int> g[MAXN];
stack<Edge> s;//存放块 边的栈,不需要清空,每次结束算法后自己清空了
int dfs(int u,int fa)//就是基于求割顶的同时已经计算出各个块
{
int lowu = pre[u] = ++clock;
int sz = g[u].size(), child = 0;
rep(i,0,sz)
{
int v = g[u][i];
if(v == fa) continue;
Edge e =Edge(u,v);
if(!pre[v])
{
s.push(e);
int lowv = dfs(v,u);
lowu = min(lowu,lowv);
if(lowv >= pre[u])//割点
{
bcc_cnt++;
bcc[0] = 0;
Edge x;
do{
x = s.top();s.pop();
if(bccno[x.from] != bcc_cnt) bcc[++bcc[0]] = x.from, bccno[x.from] = bcc_cnt;
if(bccno[x.to] != bcc_cnt) bcc[++bcc[0]] = x.to, bccno[x.to] = bcc_cnt;
}while(!(x.from == u && x.to == v));
/*这里可以对每个块处理*/
}
}
else if(pre[v] < pre[u])
{
s.push(e);
lowu = min(lowu,pre[v]);
}
}
return lowu;
}
void sloved()
{
bcc_cnt = clock = 0;
clc(pre,0);
clc(bccno,0);
rep(i,0,n) if(!pre[i]) dfs(i,-1);
}
【 Tarjan算法求 边双连通分量)O(n+m) 】
桥不会在任何边双连通分量中,所以去除桥后的连通块就是边双连通分量