6.8 深拷贝

<script type="text/javascript">
/*
  第一次调用传入一个参数parent对象,函数有两个参数,多出来的参数为空即c为空,
  递归调用遍历                                     numbers:[1,2,2],
                                                 letter:["a","b","c"],
                                                 obj:{
                                                    prop:1
                                                 },
  每递归调用一次返回一次c c分别为numbers:[1,2,2], letter:["a","b","c"], obj:{prop:1},
  第二次调用 p[i]不是对象 直接拷贝给c[i] c为{bool:true}
*/
 function deepCopy(p,c){
  //如果c不存在默认为{},存在则为c;
  //第一次调用c为空{} 
  var c = c || {};
  /*遍历p对象也就是parent对象 p[0,1,2,3]= parent = {
                                                 numbers:[1,2,2],
                                                 letter:["a","b","c"],
                                                 obj:{
                                                    prop:1
                                                 },
                                                  bool:true
                                                 };     
  */
  for(var i in p){
    //如果p[i]是一个对象
   if(typeof p[i] === "object"){
    //如果p[i]对象的构造函数是Array c[i]=空数组 否则c[i]=空对象
    c[i] = (p[i].constructor === Array) ? [] : {};
 //递归调用 深度赋值 c[i]为空数组 p[i]数组对象拷贝给c[i]实现按值传递
 deepCopy(p[i],c[i]);
   }else{
    //如果p[i]不是一个对象 那么直接拷贝
 //
    c[i] = p[i];
   }
  }
  //返回c 第一次的调用并没有结束
  return c;
 }
 var parent = {
  numbers:[1,2,2],
  letter:["a","b","c"],
  obj:{
   prop:1
  },
  bool:true
 };     
 var mydeep = deepCopy(parent);//第一次调用 参数parent是一个对象
 mydeep.numbers.push(4,5,6); //实际上是给c[numbers]添加元素
 
</script>
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值