adaboost、GBDT和xgboost对比

boosting用多种分类器对比效果

原理学习

Boosting主要就是集成学习的一种,是一种个体学习器间存在强依赖关系、必须串行生成的序列化方法。主要分为了adaboost、GBDT和xgboost这三种。

  • adaboost

adaboost是最著名的boosting算法。开始时所有的样本的权重相同,但是经过第一轮的分类总会出现错误,将错误的样本的权重加大,减小正确样本的权重,这样在下一轮的分类中就可以给予上轮出错样本更多的关注。这样,将结果再叠加到之前的结果中,就会因为权重大而对上轮结果造成的影响大,从而一步步修正结果,最终得到一个好的分类器。

  • GBDT

在学习GDBT的时候,感觉和之前的adaboost是截然不同的,adaboost感觉是在每一轮中都在跑同样的的决策树,但是GDBT则是在跑完全不同的树。GDBT从第二轮开始关注的是之前得出结果的一个残差,通过对残差的拟合最终得到一个较好的结果。在我的理解中,经过第一轮之后就已经不是对结果描述了,描述的是第一轮之后的相对误差。因为最终结果是多样的,但是经过上轮的结果,相对误差的种类则是减少的,从而也就是相当于降低了最终叶子的数量。

  • xgboost

感觉xgboost算法相对较难些,故对xgboost算法的理解相对来说比较浅。GBDT算法只利用了一阶的导数信息,xgboost对损失函数做了二阶的泰勒展开,并在目标函数之外加入了正则项对整体求最优解,用以权衡目标函数的下降和模型的复杂程度,避免过拟合。

小结

就我自己的学习理解看来,从不同的解决策略的角度来看,可将adaboost归为一列,将GDBT和xgboost归位一类。因为,adaboost是通过自适应,不断改变样本的权重的方法来实现的,后两者则都是通过不断的减小残差的方式来达到目的的。后两者即GDBT和xgboost有存在着区别,主要就是在于降低残差的方式,前者是只利用了一阶导,后者则利用了二阶泰勒展开。

### 回答1: AdaboostGBDTXGBoost和LightGBM都是机器学习中常用的集成学习算法。 Adaboost是一种迭代算法,通过不断调整样本权重和分类器权重,逐步提高分类器的准确率。 GBDT(Gradient Boosting Decision Tree)是一种基于决策树的集成学习算法,通过不断迭代,每次训练一个新的决策树来纠正前面树的错误,最终得到一个强分类器。 XGBoost是一种基于GBDT的算法,它在GBDT的基础上引入了正则化和并行化等技术,使得模型更加准确和高效。 LightGBM是一种基于GBDT的算法,它采用了基于直方图的决策树算法和互斥特征捆绑技术,使得模型训练速度更快,占用内存更少,同时也具有较高的准确率。 ### 回答2: adaboost(Adaptive Boosting) 是一种基于不同权重的弱分类器的算法,它通过迭代的方式来逐步提高分类器的准确性。在每轮迭代中,它会调整训练样本的权重,使得前一轮分类错误的样本在当前轮得到更多的关注。最终,通过组合这些弱分类器来构建一个强分类器。其优点在于不易过拟合,但需要耗费大量的时间来训练和预测。 gbdt(Gradient Boosting Decision Tree) 是一种基于决策树的集成学习算法,它通过迭代的方式来提升分类器的准确性。基于训练样本和实际输出的误差进行梯度下降,将它们作为下一个分类器的训练数据。每个分类器都在之前所有分类器得到的残差的基础上进行训练,并且将它们组合成一个最终的分类器。在训练过程中,为了避免过拟合,可以限制决策树的深度等参数,并采用交叉验证等技术。gbdt可以处理缺失数据、不平衡分类和高维度数据等问题,但需要注意过拟合的问题。 xgboost(Extreme Gradient Boosting) 是一种基于决策树的集成学习算法,它在gbdt的基础上引入了正则化项和精细的特征选择,进一步提高了分类器的准确性和效率。通过Hessian矩阵对损失函数进行二阶泰勒展开,引入正则化约束,可以优化损失函数,并通过交叉验证等技术选择最优的超参数。xgboost还支持GPU加速,提高模型训练的速度和效率,但需要更多的计算资源。xgboost在分类、回归和排名任务中表现优异,但需要注意过拟合和计算量的问题。 lightgbm是微软旗下一款高效、快速、分布式的梯度提升框架,也是一种基于决策树的集成学习算法,定位在处理高维度数据和大规模数据集上。lightgbm采用了GOSS(Gradient-based One-Side Sampling)技术和EFB(Exclusive Feature Bundling)技术对数据进行处理,大大减少数据的内存占用和训练时间。同时,还支持并行计算和GPU加速,提高了模型的速度和效率。lightgbm在排序、分类、回归等任务中表现出色,只是对离群值敏感,需要对数据进行预处理。 ### 回答3: Adaboost,Gradient Boosting Decision Tree (GBDT),XGBoost和LightGBM都是常见的集成学习算法,它们用于提高模型在复杂数据集上的准确度,并处理复杂数据集上遇到的问题。 Adaboost是一种迭代算法,每次迭代它使用提高错误分类样本的加权值,并降低正确分类样本的加权值,以便让前一个弱分类器无法捕捉并由后续分类器学习。Adaboost弱分类器快速训练和预测,且不需要太多超参数调整,但是它倾向于过度拟合数据,并且实力可能不足以解决大型数据集的问题。 GBDT使用决策树作为弱分类器,将每一棵树的预测结果作为下一棵树的预测输入,最后对所有树的预测结果进行加权求和。GBDT可以很好地处理线性和非线性问题,但是它倾向于过度拟合数据,需要进行精细调整参数,并且需要较长时间的训练时间。 XGBoost结合了GBDT的优势和树的强大性质。它采用了一些优秀的技术,如Boosting树算法,Shrinkage,Column Sampling和Pruning Nodes,以提高模型的性能和降低过拟合风险。XGBoost可以处理大规模数据集和高维数据集,并且速度较快,但需要的资源较多,如内存、计算能力和高质量的数据集。 LightGBM是XGBoost的新一代版本,采用了GOI(Gradient-based One-side Sampling)算法和Histogram-based Gradient Boosting方法来加快训练速度和降低内存占用。GOI算法通过对数据进行一侧采样来提高训练速度,而直方图梯度提升方法将节点分裂建模为一个直方图分桶过程,以减少节点分裂的计算成本。LightGBM对大数据集的处理能力很强,速度相对较快,但对于处理小数据集的效果可能不明显。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值