poj 3621 二分+spfa判负环

18 篇文章 0 订阅
11 篇文章 0 订阅

http://poj.org/problem?id=3621

求一个环的{点权和}除以{边权和},使得那个环在所有环中{点权和}除以{边权和}最大。

0/1整数划分问题

令在一个环里,点权为v[i],对应的边权为e[i], 
即要求:∑(i=1,n)v[i]/∑(i=1,n)e[i]最大的环(n为环的点数), 
设题目答案为ans, 
即对于所有的环都有 ∑(i=1,n)(v[i])/∑(i=1,n)(e[i])<=ans 
变形得ans* ∑(i=1,n)(e[i])>=∑(i=1,n)(v[i]) 
再得 ∑(i=1,n)(ans*e[i]-v[i]) >=0 
稍分析一下,就有: 
当k<ans时,就存在至少一个环∑(i=1,n)(k*e[i]-v[i])<0,即有负权回路(边权为k*e[i]-v[i]); 
当k>=ans时,就对于所有的环∑(i=1,n)(k*e[i]-v[i])>=0,即没有负权回路。 
然后我们就可以使新的边权为k*e[i]-v[i],用spfa来判断负权回路,二分ans。

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define clr0(x) memset(x,0,sizeof(x))
#define clr1(x) memset(x,-1,sizeof(x))
using namespace std;
typedef long long LL;
const int maxn = 1005,maxm = 105;
const double eps = 1e-3;
const int inf = 0x7fffffff;
int v[maxn];
struct edge{
    int v,w,next;
    edge(){};
    edge(int vv,int ww,int nnext):v(vv),w(ww),next(nnext){};
}e[maxn*5];
int head[maxn],vis[maxn],_v[maxn],cnt[maxn],ecnt,n,m;
double dist[maxn];
void add(int u,int v,int w)
{
    e[ecnt] = edge(v,w,head[u]);
    head[u] = ecnt++;
}
void init()
{
    for(int i = 1;i <= n;++i)
        RD(_v[i]);
    ecnt = 0;
    clr1(head);//判负环的初始化
    int u,v,w;
    while(m--){
        RD3(u,v,w);
        add(u,v,w);
    }
    return ;
}
bool spfa(double mid)
{
    clr0(vis),clr0(cnt);
    fill(dist,dist + n + 1,inf);
    dist[1] = 0;
    queue<int> q;
    q.push(1);
    while(!q.empty()){
        int u = q.front();
        q.pop();
        vis[u] = false;
        cnt[u]++;
        if(cnt[u] > n)
            return true;
        for(int i = head[u];i != -1;i = e[i].next){
            int v = e[i].v;
            double tmp = mid*e[i].w - _v[v];//"边权"
            if(dist[u] + tmp < dist[v]){
                dist[v] = dist[u] + tmp;
                if(!vis[v]){
                    vis[v] = true;
                    q.push(v);
                }
            }
        }
    }
    return false;
}
void work()
{
    double l = 0,r = 10000,mid,ans;
    while(r - l > eps){
        mid = (l + r)/2;
        if(spfa(mid)){
            ans = mid;
            l = mid - 0.000001;
        }else
            r = mid + 0.000001;
    }
    printf("%.2f\n",ans);
}
int main()
{
    while(~RD2(n,m)){
        init();
        work();
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值