类似抖音平台是如何存储粉丝与网红之间人物关系的?

本文探讨了类似抖音平台如何使用图数据库存储粉丝与网红的关系,并提出使用图数据库技术如Neo4j、NebulaGraph,以及社区发现算法解决查询效率问题。针对亿级点边的数据规模,文章强调了schema设计与算法选择的重要性,以实现高可用、高并发的关系检测系统。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:狄国良

【研究课题】

1、类似抖音平台是如何存储粉丝与网红之间人物关系的?

2、如何快速(最优)查询找到某网红与粉丝关系数据?

基于此课题思考相关性问题如下:

存储模型场景

1、海量数据存储  2、庞大人物关系  3、查找算法

2、相关场景:如百度百科的人物关系

社交领域:facebook 、linkedin、电商领域:实时推荐、金融领域:风控处理

制造领域:推动数字化(帮助汽车企业改进订购和采购流程、供应链溯源、客户360等)

基于以上思考,传统关系数据库不适合解决关系存储与运算。决定使用“图”数据库来解决以上场景的数据存储问题,使用“算法”来解决关系查询效率问题。

注:关系型数据库也可以解决,只是在效率问题不适用。(国内微博平台技术架构就采用mysql + redis

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值