HDOJ 4944 FSF’s game


http://blog.csdn.net/keshuai19940722/article/details/38519681

不明真相的补一发。。。

FSF’s game

Time Limit: 9000/4500 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 448    Accepted Submission(s): 215


Problem Description
FSF has programmed a game.
In this game, players need to divide a rectangle into several same squares.
The length and width of rectangles are integer, and of course the side length of squares are integer.

After division, players can get some coins.
If players successfully divide a AxB rectangle(length: A, width: B) into KxK squares(side length: K), they can get A*B/ gcd(A/K,B/K) gold coins.
In a level, you can’t get coins twice with same method. 
(For example, You can get 6 coins from 2x2(A=2,B=2) rectangle. When K=1, A*B/gcd(A/K,B/K)=2; When K=2, A*B/gcd(A/K,B/K)=4; 2+4=6; )

There are N*(N+1)/2 levels in this game, and every level is an unique rectangle. (1x1 , 2x1, 2x2, 3x1, ..., Nx(N-1), NxN)

FSF has played this game for a long time, and he finally gets all the coins in the game.
Unfortunately ,he uses an UNSIGNED 32-BIT INTEGER variable to count the number of coins.
This variable may overflow.
We want to know what the variable will be.
(In other words, the number of coins mod 2^32)
 

Input
There are multiply test cases.

The first line contains an integer T(T<=500000), the number of test cases

Each of the next T lines contain an integer N(N<=500000).
 

Output
Output a single line for each test case.

For each test case, you should output "Case #C: ". first, where C indicates the case number and counts from 1. 

Then output the answer, the value of that UNSIGNED 32-BIT INTEGER variable.
 

Sample Input
  
  
3 1 3 100
 

Sample Output
  
  
Case #1: 1 Case #2: 30 Case #3: 15662489
Hint
In the second test case, there are six levels(1x1,1x2,1x3,2x2,2x3,3x3) Here is the details for this game: 1x1: 1(K=1); 1x2: 2(K=1); 1x3: 3(K=1); 2x2: 2(K=1), 4(K=2); 2x3: 6(K=1); 3x3: 3(K=1), 9(K=3); 1+2+3+2+4+6+3+9=30
 

Author
UESTC
 

Source
 




#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

typedef long long int LL;

const int maxn=500050;
const LL mod=1LL<<32;

LL f[maxn],s[maxn];

void init()
{
    for(int i=1;i<maxn;i++)
    {
        for(int k=1;k*i<maxn;k++)
        {
            f[i*k]+=(1LL+k)*k/2;
            f[i*k]%=mod;
        }
        f[i]=f[i]*i;
        f[i]%=mod;
    }
    for(int i=1;i<maxn;i++)
    {
        s[i]=(f[i]+s[i-1])%mod;
    }
}

int main()
{
    init();
    int T_T,cas=1;
    scanf("%d",&T_T);
    while(T_T--)
    {
        int x;
        scanf("%d",&x);
        printf("Case #%d: %lld\n",cas++,s[x]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值