HDOJ 3480 Division


斜率优化DP。。。。

对数组排序后,dp【i】【j】表示对前j个物品分i段的最少代价,dp【i】【j】= min{ dp【i-1】【k】+(a【k+1】-a【j】)^2 }复杂度m*n^2      斜率优化一下就可以了。

Division

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 999999/400000 K (Java/Others)
Total Submission(s): 3008    Accepted Submission(s): 1173


Problem Description
Little D is really interested in the theorem of sets recently. There’s a problem that confused him a long time.  
Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that



and the total cost of each subset is minimal.
 

Input
The input contains multiple test cases.
In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given. 
For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.

 

Output
For each test case, output one line containing exactly one integer, the minimal total cost. Take a look at the sample output for format.

 

Sample Input
  
  
2 3 2 1 2 4 4 2 4 7 10 1
 

Sample Output
  
  
Case 1: 1 Case 2: 18
Hint
The answer will fit into a 32-bit signed integer.
 

Source
 




#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int maxn=11000;

int n,m;
int dp[maxn/2][maxn],a[maxn];
int q[maxn],head,tail;

int main()
{
	int T_T,cas=1;
	scanf("%d",&T_T);
	while(T_T--)
	{
		scanf("%d%d",&n,&m);
		for(int i=1;i<=n;i++)
			scanf("%d",a+i);
		sort(a+1,a+n+1);
		for(int i=1;i<=n;i++)
			dp[1][i]=(a[i]-a[1])*(a[i]-a[1]);
		for(int i=2;i<=m;i++)
		{
		    head=tail=0;
		    q[tail++]=i-1;
		    for(int j=i;j<=n;j++)
            {
                while(head+1<tail)
                {
                    int p1=q[head];
                    int p2=q[head+1];
                    int x1=a[p1+1],x2=a[p2+1];
                    int y1=dp[i-1][p1]+x1*x1;
                    int y2=dp[i-1][p2]+x2*x2;
                    if((y2-y1)<=(x2-x1)*2*a[j]) head++;
                    else break;
                }
                int k=q[head];
                dp[i][j]=dp[i-1][k]+(a[k+1]-a[j])*(a[k+1]-a[j]);
                while(head+1<tail)
                {
                    int p1=q[tail-2],p2=q[tail-1],p3=j;
                    int x1=a[p1+1],x2=a[p2+1],x3=a[p3+1];
                    int y1=dp[i-1][p1]+x1*x1;
                    int y2=dp[i-1][p2]+x2*x2;
                    int y3=dp[i-1][p3]+x3*x3;
                    if((y3-y2)*(x2-x1)<=(y2-y1)*(x3-x2)) tail--;
                    else break;
                }
                q[tail++]=j;
            }
		}
		printf("Case %d: %d\n",cas++,dp[m][n]);
    }
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值