World Exhibition
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1373 Accepted Submission(s): 673
Problem Description
Nowadays, many people want to go to Shanghai to visit the World Exhibition. So there are always a lot of people who are standing along a straight line waiting for entering. Assume that there are N (2 <= N <= 1,000) people numbered 1..N who are standing in the same order as they are numbered. It is possible that two or more person line up at exactly the same location in the condition that those visit it in a group.
There is something interesting. Some like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of X (1 <= X <= 10,000) constraints describes which person like each other and the maximum distance by which they may be separated; a subsequent list of Y constraints (1 <= Y <= 10,000) tells which person dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between person 1 and person N that satisfies the distance constraints.
There is something interesting. Some like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of X (1 <= X <= 10,000) constraints describes which person like each other and the maximum distance by which they may be separated; a subsequent list of Y constraints (1 <= Y <= 10,000) tells which person dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between person 1 and person N that satisfies the distance constraints.
Input
First line: An integer T represents the case of test.
The next line: Three space-separated integers: N, X, and Y.
The next X lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= N. Person A and B must be at most C (1 <= C <= 1,000,000) apart.
The next Y lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= C. Person A and B must be at least C (1 <= C <= 1,000,000) apart.
The next line: Three space-separated integers: N, X, and Y.
The next X lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= N. Person A and B must be at most C (1 <= C <= 1,000,000) apart.
The next Y lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= C. Person A and B must be at least C (1 <= C <= 1,000,000) apart.
Output
For each line: A single integer. If no line-up is possible, output -1. If person 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between person 1 and N.
Sample Input
1 4 2 1 1 3 8 2 4 15 2 3 4
Sample Output
19
Author
alpc20
Source
/* ***********************************************
Author :CKboss
Created Time :2015年07月30日 星期四 08时16分29秒
File Name :HDOJ3592.cpp
************************************************ */
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map>
using namespace std;
const int maxn=1111;
const int INF=0x3f3f3f3f;
struct Edge
{
int to,next,cost;
}edge[30300];
int Adj[maxn],Size;
void init()
{
memset(Adj,-1,sizeof(Adj)); Size=0;
}
void Add_Edge(int u,int v,int c)
{
edge[Size].to=v;
edge[Size].cost=c;
edge[Size].next=Adj[u];
Adj[u]=Size++;
}
int n,m1,m2;
int dist[maxn],cq[maxn];
bool inq[maxn];
bool spfa(int rt)
{
memset(dist,63,sizeof(dist));
memset(cq,0,sizeof(cq));
memset(inq,false,sizeof(inq));
dist[rt]=0;
queue<int> q;
inq[rt]=true; q.push(rt); cq[rt]=1;
while(!q.empty())
{
int u=q.front(); q.pop();
for(int i=Adj[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if(dist[v]>dist[u]+edge[i].cost)
{
dist[v]=dist[u]+edge[i].cost;
if(!inq[v])
{
inq[v]=true;
cq[v]++;
if(cq[v]>=n) return false;
q.push(v);
}
}
}
inq[u]=false;
}
return true;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int T_T;
scanf("%d",&T_T);
while(T_T--)
{
scanf("%d%d%d",&n,&m1,&m2);
init();
int u,v,c;
for(int i=0;i<m1;i++)
{
scanf("%d%d%d",&u,&v,&c);
Add_Edge(u,v,c);
}
for(int i=0;i<m2;i++)
{
scanf("%d%d%d",&u,&v,&c);
Add_Edge(v,u,-c);
}
bool fg=spfa(1);
if(fg==false) puts("-1");
else if(dist[n]==INF) puts("-2");
else printf("%d\n",dist[n]);
}
return 0;
}
本文介绍了一个关于在世博会上排队问题的算法解决方案,通过输入人数、喜欢距离约束和不喜欢距离约束,计算出第一个人和最后一个人之间的最大可能距离。该算法涉及图论中的SPFA算法来处理约束条件,从而找到最优解。
1617

被折叠的 条评论
为什么被折叠?



