HLG 1905 f(N) 矩阵快速幂

链接:http://acm.hrbust.edu.cn/index.php?m=ProblemSet&a=showProblem&problem_id=1915

Description:

定义函数f(N) = ∑ai*bi (i从0到N-1)。

并且

a0 = A0

ai = a(i-1)*AX+AY

b0 = B0

bi = b(i-1)*BX+BY

现在求f(N)对1000000007求余的值。

Input:

本题有多组测试数据,对于每组测试数据包含7个正整数,格式如下

N

A0 AX AY

B0 BX BY

N的取值范围不超过10^18,并且其他的数都不超过10^9。

Output:

对于每组测试数据,输出f(N)对1000000007求余的值


代码如下:


#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#define MOD 1000000007
#define INF 0x7f
#define RST(N)memset(N, 0, sizeof(N))

typedef unsigned long long ULL;
typedef long long LL;

LL xx[5][5];

void mul1(LL a[5][5], LL b[5][5], LL c[5][5])
{
    for(LL i=0; i<5; i++) {
        for(LL j=0; j<5; j++) {
            c[i][j] = 0;
            for(LL x=0;x<5;x++) {
                c[i][j] += ((a[i][x]%MOD)*(b[x][j]%MOD))%MOD;
                c[i][j] %= MOD;
            }
        }
    }
}

void mul2(LL a[1][5], LL b[5][5], LL c[1][5])
{
    for(LL i=0; i<1; i++) {
        for(LL j=0; j<5; j++) {
            c[i][j] = 0;
            for(LL x=0; x<5; x++) {
                c[i][j] += ((a[i][x]%MOD)*(b[x][j]%MOD))%MOD;
                c[i][j] %= MOD;
            }
        }
    }
}

void Mul(LL x, LL a[5][5])
{
    LL b[5][5];
    if(x == 1) {
        for(LL i=0; i<5; i++) {
            for(LL j=0; j<5; j++) {
                a[i][j] = xx[i][j];
            }
        }
        return ;
    }
    if(x%2 == 0) {
        Mul(x/2, b);
        mul1(b, b, a);
    }else if(x%2 == 1) {
        Mul(x-1, b);
        mul1(b, xx, a);
    }
}

int main()
{
    LL n, Ax, Ay, Bx, By, A0, B0;
    LL start[1][5], mid[5][5], end[1][5];

    while(~scanf("%lld", &n))  {
        RST(xx);
        scanf("%lld %lld %lld", &A0, &Ax, &Ay);
        scanf("%lld %lld %lld", &B0, &Bx, &By);

        A0%=MOD, Ax%=MOD, Ay%=MOD, B0%=MOD, Bx%=MOD, By%=MOD;
        if(n == 1) printf("%lld\n", (A0*B0)%MOD);
        else{
            long long int a1=(A0*Ax%MOD+Ay)%MOD;
            long long int b1=(B0*Bx%MOD+By)%MOD;
            start[0][0] = (A0*B0)%MOD, start[0][1] = (a1*b1)%MOD;
            start[0][2] = a1, start[0][3] = b1, start[0][4] = 1;
            xx[0][0] = xx[1][0] = xx[4][4] = 1;
            xx[1][1] = (Ax*Bx)%MOD, xx[2][1] = (Ax*By)%MOD;
            xx[3][1] = (Ay*Bx)%MOD, xx[4][1] = (Ay*By)%MOD;
            xx[2][2] = Ax, xx[4][2] = Ay;
            xx[3][3] = Bx, xx[4][3] = By;
            Mul(n-1, mid), mul2(start, mid, end);
            printf("%lld\n", end[0][0]%MOD);
        }
    }
    return 0;
}



引用:OpenCvSharp是一个OpenCV的.Net wrapper,用于开发基于OpenCV的应用程序,它与原始的OpenCV更接近,并提供了详细的使用样例。 引用:对于使用OpenCV进行图像处理的代码示例,可以使用import numpy as np import cv2来导入OpenCV库,并使用cv2.imread、cv2.imshow等函数进行图像的读取和显示。 引用:如果想要使用OpenCV进行分类器的生成,可以使用opencv_traincascade.exe命令,并提供指定的参数,例如-data用于指定生成的分类器的保存路径,-vec用于指定正样本描述文件的路径,-bg用于指定负样本文件的路径,以及其他参数如numPos、numNeg、minHitRate等。 关于"opencv hlg"的问题,根据提供的引用内容,我没有找到与"opencv hlg"相关的具体信息。可能需要提供更多背景或上下文信息来解答该问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [OpenCvSharp](https://download.csdn.net/download/qq_18865111/86722032)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [python opencv 读取图片 存储图片](https://blog.csdn.net/weixin_41799483/article/details/80829825)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [opencv分类器训练方法](https://blog.csdn.net/weixin_41799483/article/details/80567909)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值