文章目录
一、简单效果展示
二、基础概念
-
核心定位
ComfyUI(康菲UI)是基于节点的可视化操作界面,通过模块化组件构建图像生成流程,支持深度定制和复杂任务编排。 -
核心组件
节点:代表特定功能模块(如模型加载、参数调整、图像解码),用户通过拖拽组合实现功能链。
工作流:由节点连接形成的完整生成流程,支持保存/服用,可快速实现批量任务。
三、 配置要求
-
基础配置:支持CPU/GPU运行,最低8GB内存。
Python:推荐使用Python3.10+环境。 -
开局效果展示配置:
CPU:i7-9700K
内存:24.0 GB
显卡:RTX 3060 Ti (8 GB)
Python:3.12
四、安装包网站
五、ComfyUI目录
1. 根目录介绍
启动命令:
run_cpu.bat:window系统下CPU启动
run_nvidia_gpu.bat:window系统下GPU启动,默认为32位。依赖FP32精度,显存占用较高。
run_nvidia_gpu_fast_fp16_accumulation.bat:window系统下GPU启动,1混合精度训练(FP16+FP32),适用于显存受限,多卡并行训练。
选择建议
fast_fp16_accumulation:如果训练参数量大于1亿的模型、单卡显存<24GB或追求极致训练速度时推荐使用
fun_nvidia_cpu:小模型调试、对数值稳定性要求极高(如金融预测模型)或GPU不支持Tesor Core时使用。
python包
python_embeded:python依赖包会安装到这里
ComfyUI包
ComfyUI核心包
2. ComfyUI核心包
1. 核心包核心文件
main.py/app.py:主程序入口文件,运行后启动Web服务。
requirements.txt:Python依赖库清单,用于环境部署。
README.md:包含安装说明、基础操作指南和版本更新日志。
2. models目录
checkpoints:存放大模型的主模型文件。
loras:存放LoRA(Low-Rank Adaptation)微调模型,用于快速任务适应。
controlnet:用于精细化控制图像生成过程。
embeddings:用于存放嵌入模型,用于语义特征提取。
clip:Contrastive Languager-Image Pretraining。用于文本条件引导、图像特征提取和语义相似性计算。
lama:图像修复、模型微调或特定任务优化模型。
inpaint:models目录没有,需要自己创建。主要用于图像修复或局部重绘。
unet:用于存放U-Net模型,广泛用于图像生成、分隔和扩散模型的网络架构。
text_encoders:文本数据转化为数值向量的关键组件,尤其是跨模态任务。
Upscale_models:图像放大的模型,低分辨率输入,高分辨率输出。
vae:编解码模型,用于图像编解码优化。
3. custom_nodes/扩展插件区
安装的各种插件都存放在这里。
4. input
输入的文件都存在这个目录。比如:上传的图像。
5. output
输出逇目录存在这里。比如:生成的图像。