题意:每组数据给定n个点,每个点有四个属性,初始的x,y坐标,以及这个点的vx,vy,就是分速度~~输出这n个点在所有时刻最短的最长距离(任意两个点间,最长的那个),并输出时间。
思路:这题就不得不说了~~有亮点~~两点间的距离是二次函数,由于函数开口向上,所以函数的顶点就是两点间的最短距离,用三分可以求出java不用快速io的话大概是4000+ms能不能更好。。就不造了~~但是模拟二次函数讨论对称轴只需要400ms左右~~~~点赞~~~
AC代码:(二分)
import java.text.DecimalFormat;
import java.util.Scanner;
class point{long x,y,vx,vy;}
public class Main
{
static Scanner scan=new Scanner(System.in);
public static void main(String[] args)
{
int t=scan.nextInt();
for(int i=1;i<=t;i++)
{
int n=scan.nextInt(),pop=0;
point p[]=new point[n];
for(int j=0;j<n;j++)
{
p[j]=new point();
p[j].x=scan.nextLong();
p[j].y=scan.nextLong();
p[j].vx=scan.nextLong();
p[j].vy=scan.nextLong();
}
long xx,yy,vxx,vyy;
long a[]=new long[n*(n-1)];
long b[]=new long[n*(n-1)];
long c[]=new long[n*(n-1)];
double d[]=new double[n*(n-1)];
for(int j=0;j<n-1;j++)//模拟二次函数,总共有n(n-1)个,f(x)=ax^2+bx+c~~~这样就可以了开三个数组装abc
for(int k=j+1;k<n;k++,pop++)
{
xx=p[j].x-p[k].x;yy=p[j].y-p[k].y;
vxx=p[j].vx-p[k].vx;vyy=p[j].vy-p[k].vy;
a[pop]=vxx*vxx+vyy*vyy;b[pop]=(xx*vxx+yy*vyy)<<1;
c[pop]=xx*xx+yy*yy;d[pop]=-b[pop]/(2.0*a[pop]); //d表示对称轴
}
double l=0,r=100,mid=0,mid2,eps=1e-6,ans=1e15;//假定区间是[1,100]~~~时间确实是在这个范围内的~别问我为什么,猜的,wa了再调大点就是
boolean flag=false;
for(double cur=0,dis;r-l>eps;cur=0)
{
mid=(r+l)/2;//二分时间
for(int j=0;j<pop;j++)
if((dis=(a[j]*mid+b[j])*mid+c[j])>cur)//两点间的距离如果大于当前最大值
{
cur=dis;
flag=(mid>d[j])?true:false;//判断这个时候时间是在对称轴的左边还是右边,并标记,至于为什么要选择当前的这个对称轴~~画画图,想想性质就知道了
}
ans=Math.min(ans,cur);//每次二分时间得到的值,选小的
if(flag) r=mid;
else l=mid;
}
DecimalFormat fmt=new DecimalFormat("0.00");
System.out.println("Case #"+i+": "+fmt.format(Math.round(mid*100)/100D)+" "+
fmt.format(1D*Math.round(Math.sqrt(ans)*100)/100D));
}
}
}
AC代码:(三分)
import java.text.DecimalFormat;
import java.util.Scanner;
class point{double x,y,vx,vy;}
public class Main_G
{
static Scanner scan=new Scanner(System.in);
private static double cal(point a,point b,double t)
{
return Math.pow(a.x+a.vx*t-b.x-b.vx*t,2)+Math.pow(a.y+a.vy*t-b.y-b.vy*t,2);
}
public static void main(String[] args)
{
int t=scan.nextInt();
for(int i=1;i<=t;i++)
{
int n=scan.nextInt();
point p[]=new point[n];
for(int j=0;j<n;j++)
{
p[j]=new point();
p[j].x=scan.nextDouble();
p[j].y=scan.nextDouble();
p[j].vx=scan.nextDouble();
p[j].vy=scan.nextDouble();
}
double l=0,r=1e4,m1,m2,ans1=0,ans2=0;
int turn=100;
while(turn-->0)//三分,循环100次,保证精度~~~
{
m1=l+(r-l)/3;
m2=r-(r-l)/3;
ans1=ans2=0;
for(int j=0;j<n-1;j++)
for(int k=j+1;k<n;k++)
{
ans1=Math.max(ans1,cal(p[j],p[k],m1));//给中间的这两个点求距离,求最大距离
ans2=Math.max(ans2,cal(p[j],p[k],m2));
}
if(ans1<ans2) r=m2;//看谁大,然后再判定l跟r怎么变化
else l=m1;
}
ans1=0;
for(int j=0;j<n-1;j++)
for(int k=j+1;k<n;k++)
ans1=Math.max(ans1,cal(p[j],p[k],l));//这个就是答案
DecimalFormat fmt=new DecimalFormat("0.00");
System.out.println("Case #"+i+": "+fmt.format(Math.round(l*100)/100D)+" "+
fmt.format(1D*Math.round(Math.sqrt(ans1)*100)/100));
}
}
}