HDU 4717 The Moving Points

HDU 4717 The Moving Points

题意:每组数据给定n个点,每个点有四个属性,初始的x,y坐标,以及这个点的vx,vy,就是分速度~~输出这n个点在所有时刻最短的最长距离(任意两个点间,最长的那个),并输出时间。

思路:这题就不得不说了~~有亮点~~两点间的距离是二次函数,由于函数开口向上,所以函数的顶点就是两点间的最短距离,用三分可以求出java不用快速io的话大概是4000+ms能不能更好。。就不造了~~但是模拟二次函数讨论对称轴只需要400ms左右~~~~点赞~~~

AC代码:(二分)

import java.text.DecimalFormat;
import java.util.Scanner;

class point{long x,y,vx,vy;}
public class Main
{
	static Scanner scan=new Scanner(System.in);
	
	public static void main(String[] args)
	{
		int t=scan.nextInt();
		for(int i=1;i<=t;i++)
		{
			int n=scan.nextInt(),pop=0;
			point p[]=new point[n];
			for(int j=0;j<n;j++)
			{
				p[j]=new point();
				p[j].x=scan.nextLong();
				p[j].y=scan.nextLong();
				p[j].vx=scan.nextLong();
				p[j].vy=scan.nextLong();
			}
			long xx,yy,vxx,vyy;
			long a[]=new long[n*(n-1)];
			long b[]=new long[n*(n-1)];
			long c[]=new long[n*(n-1)];
			double d[]=new double[n*(n-1)];
			for(int j=0;j<n-1;j++)//模拟二次函数,总共有n(n-1)个,f(x)=ax^2+bx+c~~~这样就可以了开三个数组装abc
				for(int k=j+1;k<n;k++,pop++)
				{
					xx=p[j].x-p[k].x;yy=p[j].y-p[k].y;
					vxx=p[j].vx-p[k].vx;vyy=p[j].vy-p[k].vy;
					a[pop]=vxx*vxx+vyy*vyy;b[pop]=(xx*vxx+yy*vyy)<<1;
					c[pop]=xx*xx+yy*yy;d[pop]=-b[pop]/(2.0*a[pop]);	//d表示对称轴
				}
			double l=0,r=100,mid=0,mid2,eps=1e-6,ans=1e15;//假定区间是[1,100]~~~时间确实是在这个范围内的~别问我为什么,猜的,wa了再调大点就是
			boolean flag=false;
			for(double cur=0,dis;r-l>eps;cur=0)
			{
				mid=(r+l)/2;//二分时间
				for(int j=0;j<pop;j++)
					if((dis=(a[j]*mid+b[j])*mid+c[j])>cur)//两点间的距离如果大于当前最大值
					{
						cur=dis;
						flag=(mid>d[j])?true:false;//判断这个时候时间是在对称轴的左边还是右边,并标记,至于为什么要选择当前的这个对称轴~~画画图,想想性质就知道了
					}
				ans=Math.min(ans,cur);//每次二分时间得到的值,选小的
				if(flag) r=mid;
				else l=mid;
			}
			DecimalFormat fmt=new DecimalFormat("0.00");
			System.out.println("Case #"+i+": "+fmt.format(Math.round(mid*100)/100D)+" "+
					fmt.format(1D*Math.round(Math.sqrt(ans)*100)/100D));
		}
	}
}
AC代码:(三分)

import java.text.DecimalFormat;
import java.util.Scanner;

class point{double x,y,vx,vy;}
public class Main_G
{
	static Scanner scan=new Scanner(System.in);

	private static double cal(point a,point b,double t)
	{
		return Math.pow(a.x+a.vx*t-b.x-b.vx*t,2)+Math.pow(a.y+a.vy*t-b.y-b.vy*t,2);
	}
	
	public static void main(String[] args)
	{
		int t=scan.nextInt();
		for(int i=1;i<=t;i++)
		{
			int n=scan.nextInt();
			point p[]=new point[n];
			for(int j=0;j<n;j++)
			{
				p[j]=new point();
				p[j].x=scan.nextDouble();
				p[j].y=scan.nextDouble();
				p[j].vx=scan.nextDouble();
				p[j].vy=scan.nextDouble();
			}
			double l=0,r=1e4,m1,m2,ans1=0,ans2=0;
			int turn=100;
			while(turn-->0)//三分,循环100次,保证精度~~~
			{
				m1=l+(r-l)/3;
				m2=r-(r-l)/3;
				ans1=ans2=0;
				for(int j=0;j<n-1;j++)
					for(int k=j+1;k<n;k++)
					{
						ans1=Math.max(ans1,cal(p[j],p[k],m1));//给中间的这两个点求距离,求最大距离
						ans2=Math.max(ans2,cal(p[j],p[k],m2));
					}
				if(ans1<ans2) r=m2;//看谁大,然后再判定l跟r怎么变化
				else l=m1;
			}
			ans1=0;
			for(int j=0;j<n-1;j++)
				for(int k=j+1;k<n;k++)
					ans1=Math.max(ans1,cal(p[j],p[k],l));//这个就是答案
			DecimalFormat fmt=new DecimalFormat("0.00");
			System.out.println("Case #"+i+": "+fmt.format(Math.round(l*100)/100D)+" "+
			fmt.format(1D*Math.round(Math.sqrt(ans1)*100)/100));
		}
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值