SHA-512
安全Hash函数(SHA)是使用最广泛的Hash函数。由于其他曾被广泛使用的Hash函数都被发现存在安全隐患,从2005年至今,SHA或许是仅存的Hash算法标准。
SHA发展史
SHA由美国标准与技术研究所(NIST)设计并于1993年发表,该版本称为SHA-0,由于很快被发现存在安全隐患,1995年发布了SHA-1。
2002年,NIST分别发布了SHA-256、SHA-384、SHA-512,这些算法统称SHA-2。2008年又新增了SHA-224。
由于SHA-1已经不太安全,目前SHA-2各版本已成为主流。
SHA-512
步骤1:填充附加位
填充消息使其长度≡896(mod 1024)。填充由一个1 和后续的0组成。
步骤2:附加长度
在填充后的消息后附加128位的块,将其视为无符号整数,它包含前消息的长度。
前两步的结果是产生了一个长度为1024整数倍的消息,以便分组。
步骤3:初始化Hash缓冲区
Hash函数中间结果和最终结果保存在512位的缓冲区,缓冲区由8个64位的寄存器(a、b、c、d、e、f、g、h)表示,并将这些寄存器初始化为下列64位的整数(十六进制)
每个寄存器内容获取的方式是:取前8个素数(2、3、5、7、11、13、17、19)取平方根,取小数部分的前64位。
步骤4:以1024位分组(128个字节)为单位处理消息并输出结果
总结SHA-512的运算如下:
H0 = IV
Hi = Hi-1+F(Hi-1,Mi)
MD = HN
IV是第三步中定义的abcdefgh缓冲区的初始值
Hi是第i个消息分组处理的最后一轮的输出
N为消息(包括填充和长度域)中的分组数
MD表示最后的消息摘要值
F表示轮函数
+为模264位加
轮函数的核心是具有80轮运算的模块,在图11.8中,该模块标记为F。下图是它的逻辑原理。
Kt是轮常数,每一轮的轮常数均不相同,用来使每轮的计算不同。这些常数获得方法如下:对前80个素数开立方根,取小数部分前64位。这些常数提供了64位随机串集合,可以初步消除输入数据中的统计规律。
对分组Mi进行消息扩展生成Wt,每个Wt64位,前16个Wt直接取自当前分组。余下的值按如下方式导出
Wt = δ1512(Wt-2) + Wt-7 + δ0512(Wt-15) + Wt-16
δ1512(x) = ROTR1(x)⊕ROTR8(x)⊕SHR7(x)
δ0512(x) = ROTR19(x)⊕ROTR61(x)⊕SHR6(x)
ROTRn(x)为对64位的变量x循环右移n位
SHRn(x)为对64位变量x向左移n位,右边填充0
+为模264位加
轮函数每一轮操作如下图
从上图可以看出,轮函数有两个特点:
1、轮函数输出的8个字中的6个是通过简单的轮置换实现的。如上图的阴影部分。
2、输出中只有2个字通过替代操作产生。
字e是将输入变量(d,e,f,g,h)以及轮常数Kt和轮消息Wt作为输入的函数。
字a是将除d之外的输入变量以及轮常数Kt和轮消息Wt作为输入的函数。
T1 = h + Ch(e,f,g) + (∑1512e) + Wt + Kt
T2 = (∑0512a) + Maj(a,b,c)
e = d + T1
a = T1 + T2
其中:
t为步骤数,0≤t≤79
Ch(e,f,g) = (e AND f)⊕(NOT e AND g) 条件函数(位运算):如果e,则f,否则g
Maj(a,b,c) = (a AND b)⊕(a AND c)⊕(b AND c) 当且仅当变量的多数(2个或者3个)为真时函数为真
(∑0512a) = ROTR28(a)⊕ROTR34(a)⊕ROTR39(a)
(∑1512e) = ROTR14(e)⊕ROTR18(e)⊕ROTR41(e)
SHA-512算法具有如下特性:Hash码的每一个位都是全部输入位的函数。基本函数F多次复杂重复运算使得结果充分混淆,从而使得随机选择两个消息,甚至于这两个消息有相似的特征,都不太可能产生相同的Hash码。除非SH-512中存在目前未公开的隐藏缺陷,找到两个具有相同摘要的消息的复杂度需要2256次操作,给定摘要寻找消息的复杂度需要2512次操作。
原文链接:http://www.cnblogs.com/block2016/p/5632234.html