锁屏面试题百日百刷-Hive篇(十)

 锁屏面试题百日百刷,每个工作日坚持更新面试题。锁屏面试题app、小程序现已上线,官网地址:https://www.demosoftware.cn。已收录了每日更新的面试题的所有内容,还包含特色的解锁屏幕复习面试题、每日编程题目邮件推送等功能。让你在面试中先人一步!接下来的是今日的面试题:

1.如何理解 Map Join

MapJoin顾名思义,就是在Map阶段进行表之间的连接。而不需要进入到Reduce阶段才进行连接。这样就节省了在Shuffle阶段时要进行的大量数据传输。从而起到了优化作业的作用。

要使MapJoin能够顺利进行,那就必须满足这样的条件:除了一份表的数据分布在不同的Map中外,其他连接的表的数据必须在每个Map中有完整的拷贝。

所以并不是所有的场景都适合用MapJoin。它通常会用在如下的一些情景:在二个要连接的表中,有一个很大,有一个很小,这个小表可以存放在内存中而不影响性能。

这样我们就把小表文件复制到每一个Map任务的本地,再让Map把文件读到内存中待用。

在Hive v0.7之前,需要使用hint提示 /*+ mapjoin(table) */才会执行MapJoin。Hive v0.7之后的版本已经不需要给出MapJoin的指示就进行优化。现在可以通过如下配置参数来进行控制:

set hive.auto.convert.join=true;

Hive还提供另外一个参数--表文件的大小作为开启和关闭MapJoin的阈值:

--旧版本为hive.mapjoin.smalltable.filesize

set hive.auto.convert.join.noconditionaltask.size=512000000

注意,如果hive.auto.convert.join是关闭的,则本参数不起作用。否则,如果参与连接的N个表(或分区)中的N-1个 的总大小小于512MB,则直接将连接转为Map连接。默认值为20MB。

MapJoin的使用场景:

1.关联操作中有一张表非常小 2. 不等值的链接操作

(1)大小表关联

select f.a,f.b from A t join B f on ( f.a=t.a and f.ftime=20110802)

该语句中B表有30亿行记录,A表只有100行记录,而且B表中数据倾斜特别严重,有一个key上有15亿行记录,在运行过程中特别的慢,而且在reduece的过程中遇到执行时间过长或者内存不够的问题。

MAPJION会把小表全部读入内存中,在map阶段直接拿另外一个表的数据和内存中表数据做匹配,由于在map时进行了join操作,省去了reduce运行的效率会高很多。

这样就不会由于数据倾斜导致某个reduce上落数据太多而失败。于是原来的sql可以通过使用hint的方式指定join时使用mapjoin。

select /*+ mapjoin(A)*/ f.a,f.b from A t join B f on ( f.a=t.a and f.ftime=20110802)

在实际使用中,只要根据业务调整小表的阈值即可,hive会自动帮我们完成mapjoin,提高执行的效率。

(2)不等连接

mapjoin还有一个很大的好处是能够进行不等连接的join操作,如果将不等条件写在where中,那么mapreduce过程中会进行笛卡尔积,运行效率特别低,如果使用mapjoin操作,在map的过程中就完成了不等值的join操作,效率会高很多。

select A.a ,A.b from A join B where A.a>B.a

(3)使用限制

LEFT OUTER JOIN的左表必须是大表;

RIGHT OUTER JOIN的右表必须是大表;

INNER JOIN左表或右表均可以作为大表;

FULL OUTER JOIN不能使用MAPJOIN;

MAPJOIN支持小表为子查询;

使用MAPJOIN时需要引用小表或是子查询时,需要引用别名;

在MAPJOIN中,可以使用不等值连接或者使用OR连接多个条件;

在MAPJOIN中最多支持指定6张小表,否则报语法错误;

如果使用MAPJOIN,则所有小表占用的内存总和不得超过设置的内存(解压后的逻辑数据量)。

2.如何理解Bucket-MapJoin

(1)作用

两个表join的时候,小表不足以放到内存中,但是又想用map side join这个时候就要用到bucket Map join。其方法是两个join表在join key上都做hash bucket,并且把你打算复制的那个(相对)小表的bucket数设置为大表的倍数。这样数据就会按照key join,做hash bucket。小表依然复制到所有节点,Map join的时候,小表的每一组bucket加载成hashtable,与对应的一个大表bucket做局部join,这样每次只需要加载部分hashtable就可以了。

(2)条件

1) set hive.optimize.bucketmapjoin = true;

2) 一个表的bucket数是另一个表bucket数的整数倍

3) bucket列 == join列

4) 必须是应用在map join的场景中

注意:如果表不是bucket的,则只是做普通join。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值