Lengths of Curves in Space

Arc-Length

先介绍一个思想,曲线 γ \gamma γ可以看作是空间中的一个点在时间 t t t内的移动轨迹。而点在 t t t时刻在空间内的位置 γ ( t ) \gamma{(t)} γ(t)可以通过向量来表示:
V = ( v 1 , v 2 , … , v n ) f o r   V ∈ ℜ n V = (v_{1},v_{2},\dots,v_{n}) \hspace{1cm} for \ V \in \Re^{n} V=(v1,v2,,vn)for Vn
向量长度为:
∥ V ∥ = ( v 1 ) 2 + ⋯ + ( v n ) 2 \parallel{V}\parallel = \sqrt{(v_{1})^{2} + \dots +(v_{n})^{2}} V=(v1)2++(vn)2
计算曲线 γ ( t ) \gamma(t) γ(t)的弧长,我们可以借助微分的思想。当 δ t \delta{t} δt足够小时,点在 δ t \delta{t} δt时间内的运动轨迹(曲线 γ ( t ) \gamma(t) γ(t) δ t \delta{t} δt区间内的弧长)可以用一段直线 ∥ γ ( t + δ t ) − γ ( t ) ∥ \parallel{\gamma{(t+\delta{t})}-\gamma{(t)}}\parallel γ(t+δt)γ(t)来替代。 δ t \delta{t} δt无限小,这段直线的长度也就无限趋近于曲线 γ ( t ) \gamma(t) γ(t) δ t \delta{t} δt区间内的弧长。如下图:

在这里插入图片描述

令曲线 γ ( t ) \gamma{(t)} γ(t)的导数为 γ ˙ ( t ) \dot{\gamma}{(t)} γ˙(t) δ t \delta{t} δt足够小时, ( ( γ ( t + δ t ) ) − γ ( t ) ) / δ t ((\gamma{(t+\delta{t})}) - \gamma{(t)})/\delta{t} ((γ(t+δt))γ(t))/δt近似等于 γ ˙ ( t ) \dot{\gamma}{(t)} γ˙(t)。所以弧长近似等于
∥ γ ˙ ( t ) ∥ δ t \parallel{\dot{\gamma}{(t)}} \parallel \delta{t} γ˙(t)δt
因此曲线 γ ( t ) \gamma{(t)} γ(t)的长度定义如下:
∫ ∥ γ ˙ ( t ) ∥ δ t \int \parallel{\dot{\gamma}{(t)}} \parallel \delta{t} γ˙(t)δt

Lengths of Curves on Surfaces

对于一块曲面 S S S上的曲线 γ ( t ) \gamma(t) γ(t)而言,计算其长度的关键依旧在于其导数的计算。不过,我们可以换一种表现形式,可以将曲线在 p p p点的矢向量 v \bold{v} v分解为曲面 σ ( u , v ) \sigma(u,v) σ(u,v) p p p点处的切平面 T p S T_{p}{S} TpS上两个基向量 δ u \delta_{u} δu δ v \delta_{v} δv的线性组合( δ u \delta_{u} δu δ v \delta_{v} δv不必要正交)。如下图所示:

在这里插入图片描述

其中, v = λ δ u + μ δ v \bold{v} = \lambda \delta_{u} + \mu \delta_{v} v=λδu+μδv ∥ v ∥ = ( v ⋅ v ) 1 / 2 = ( λ 2 δ u 2 + μ 2 δ v 2 + 2 λ μ δ u δ v ) 1 / 2 \parallel{\bold{v}} \parallel = (\bold{v} \centerdot \bold{v})^{1/2} = (\lambda^{2}\delta_{u}^2 + \mu^{2}\delta_{v}^2 + 2\lambda\mu\delta_{u}\delta_{v})^{1/2} v=(vv)1/2=(λ2δu2+μ2δv2+2λμδuδv)1/2。即曲面上曲线 γ ( t ) \gamma(t) γ(t)的长度定义为:
∫ ( λ 2 δ u 2 + μ 2 δ v 2 + 2 λ μ δ u δ v ) 1 / 2 d t \int(\lambda^{2}\delta_{u}^2 + \mu^{2}\delta_{v}^2 + 2\lambda\mu\delta_{u}\delta_{v})^{1/2} dt (λ2δu2+μ2δv2+2λμδuδv)1/2dt

E = ∥ δ u ∥ 2 E=\parallel \delta_{u} \parallel^{2} E=δu2 F = δ u δ v F=\delta_{u} \delta_{v} F=δuδv G = ∥ δ v ∥ 2 G=\parallel \delta_{v} \parallel^{2} G=δv2
&lt; v , v &gt; = v ⋅ v = λ 2 δ u 2 + μ 2 δ v 2 + 2 λ μ δ u δ v = E λ 2 + 2 F λ μ + G μ 2 &lt;\bold{v},\bold{v}&gt; = \bold{v} \centerdot \bold{v} = \lambda^{2}\delta_{u}^2 + \mu^{2}\delta_{v}^2 + 2\lambda\mu\delta_{u}\delta_{v} = E \lambda^{2} + 2F\lambda \mu + G\mu^{2} <v,v>=vv=λ2δu2+μ2δv2+2λμδuδv=Eλ2+2Fλμ+Gμ2
其中,表达式 &lt; v , v &gt; &lt;\bold{v},\bold{v}&gt; <v,v> E λ 2 + 2 F λ μ + G μ 2 E \lambda^{2} + 2F\lambda \mu + G\mu^{2} Eλ2+2Fλμ+Gμ2被称作曲面 σ ( u , v ) \sigma(u,v) σ(u,v)的第一基本形式(First Fundamental Form)。并且,通过观察曲线 γ ( t ) \gamma(t) γ(t)的长度定义公式,可知其长度由其所在曲面的第一基本形式决定。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值