自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(50)
  • 收藏
  • 关注

原创 x86 Ubuntu上建立aarch64/arm64 Ubuntu的交叉编译链

x86 Ubuntu 上建立aarch64/arm64的交叉编译链注意:x86 Ubuntu下构建的aarch64 Ubuntu版本需要和程序最终运行的aarch64 Ubuntu的版本保持一致(如果x86 Ubuntu版本和构建的aarch64 Ubuntu版本一致,安装aarch64的编译工具会简单一些,直接apt。本文以Ubuntu 20.04.03举例)。准备aarch64(即arm64)的文件系统rootfs;从http://cdimage.ubuntu.com/ubuntu-base

2021-10-30 12:12:05 5567 3

原创 为什么structure from motion只能提取出物体的比例信息?

首先,构建一个相机移动的模型。假设相机通过旋转矩阵RRR和位移向量TTT从prp_{r}pr​的位置移动到plp_{l}pl​的位置。世界坐标系中的物体PPP在不同位置的相机坐标系中的坐标是PrP_{r}Pr​和PlP_{l}Pl​。PPP和PlP_{l}Pl​、PPP和PrP_{r}Pr​之间的替换公式为:[XlYlZl]=Pl=RlP+Tl=Rl[XYZ]+Tl[XrYrZr]=Pr=RrP+Tr=Rr[XYZ]+Tr\begin{bmatrix} X_{l} \\ Y_{l} \\ Z_{l} \

2020-04-01 19:34:26 268

原创 主成分分析 -- Principal Components Analysis

如今,数据挖掘和机器学习常面对高维数据(X∈RdX \in \R^{d}X∈Rd)。为了应对高维数据,数据预处理通常需要对数据做降维处理(Y=f(X)∈Rp,p≪dY = f(X) \in \R^{p}, p \ll dY=f(X)∈Rp,p≪d)。在降低数据维度的同时,要尽可能的保留原有的数据信息。主成分分析便是一种常用的降维方法。它在降维的同时尽可能的保留原数据的方差信息。假设我们有下图中的二维数据(X=[x1,x2]TX = [x_{1}, x_{2}]^{T}X=[x1​,x2​]T),我们想将其

2019-11-16 22:09:35 457

原创 OpenCV 基于色彩直方图进行肤色检测

色彩直方图是统计不同色彩在图像中的像素个数。例如,下图的猫咪在RGB色彩空间中每通道的灰度直方图(线条的颜色与其通道相对应)。将图像转为HSV色彩空间(Hue:色调;Saturation:饱和度;Value:亮度),我们可以更稳定地提取特定的颜色。本示例采用HSV色彩空间的H、S通道来进行颜色提取。H、S通道下的色彩直方图二维的展现形式如下(竖列为Hue通道,横行为Saturation通道,图像中的像素亮度越高,表明该色彩在原始图像中出现的频次越高):程序执行过程:截取若干张不同肤色的图片,最

2019-11-09 04:25:43 1097 15

原创 Active Shape Model Implementation

Dataset:https://personalpages.manchester.ac.uk/staff/timothy.f.cootes/data/talking_face/talking_face.htmlstep 1: load images and pointsimport cv2from matplotlib import pyplot as pltimport osimport mathimport numpy as np%matplotlib inlinerandom_ind

2019-07-12 21:12:23 436

转载 Active Shape Model

Active Shape Model

2019-07-12 21:06:42 560

原创 Face Swapping

Dataset: https://personalpages.manchester.ac.uk/staff/timothy.f.cootes/data/talking_face/talking_face.htmlstep 1: load images and pointsimport cv2from matplotlib import pyplot as pltimport osimport numpy as np%matplotlib inlinerandom_ind = np.rando

2019-06-29 13:48:13 957

原创 Start Face Recognition by PCA from scratch

Dataset: http://vision.ucsd.edu/content/yale-face-databaseImage pre-processingstep 1: convert images in gif to images in jpgimport osfrom PIL import Imageimport filetypeimages_dir = "./yalefaces/"for file in os.listdir(images_dir): if filetype

2019-06-21 19:46:52 314

原创 Face Recognition with OpenCV built-in recognizer

Dataset: http://vision.ucsd.edu/content/yale-face-databaseImage pre-processingstep 1: convert images in gif to images in jpgimport osfrom PIL import Imageimport filetypeimages_dir = "./yalefaces/"for file in os.listdir(images_dir): if filetype

2019-06-20 11:27:10 205

翻译 Manifold

Manifold

2019-06-05 14:44:16 4665

翻译 Kendall’s Shape Coordinates

Kendall’s Shape Coordinates

2019-06-04 17:48:04 310

翻译 Bookstein Shape Coordinates

Bookstein Shape Coordinates

2019-05-26 17:24:54 361

翻译 Centroid Size

Centroid Size

2019-05-25 10:54:00 766

翻译 前向链表--Forward List

前向链表

2019-04-29 16:39:03 675

翻译 链表--List

链表

2019-04-29 16:37:31 123

翻译 双端队列--Deque

双端队列

2019-04-29 16:34:52 182

翻译 向量--Vector

向量

2019-04-29 16:33:29 197

翻译 数组--Array

数组

2019-04-29 16:31:53 111

原创 八皇后问题

对于检测同一斜线上是否有多皇后,可以将正/反对角线上下移动(即col值保持不变,row值加减),并只考虑棋盘内坐标(如下图)。最终采用回溯法求解八皇后问题,共有92种解。main.cpp//// main.cpp// Eight_queens//// Created by _R on 2019/4/24.// Copyright © 2019 _R. All rights reserved.//#include <iostream>#include "ChessB

2019-04-24 19:41:58 331

翻译 Lengths of Curves in Space

Lengths of Curves in Space

2019-04-15 18:21:26 183

翻译 Tensor Product Spline Surfaces

Tensor Product Spline Surfaces

2019-04-11 15:26:34 430

翻译 Surface Mapping/Parameterization

Surface Mapping/Parameterization

2019-04-11 10:29:47 506

翻译 B-Spline Curve

B-Spline Curve

2019-04-10 16:14:14 968

翻译 Bezier Curve

Bezier Curve

2019-04-08 17:05:21 457

原创 OpenCV 基于CAMShift算法的对象检测与跟踪

视频来源:http://edu.51cto.com/course/8837.html?source=so以下代码用OpenCV实现了视频中基于CAMShift算法的对象检测与跟踪,该方法实质上仍然是基于色彩的对象跟踪,不过是在HSV色彩空间,选取Hue通道,一定程度上降低了光照变化所造成的影响。//// main.cpp// opencv-learning//// Created by _R on 2019/1/9.// Copyright © 2019 _R. All rights

2019-02-20 21:24:00 541 1

原创 OpenCV 基于Lucas-Kanade光流算法的对象跟踪

视频来源:https://www.youtube.com/watch?v=EvIwL0aSCZY以下代码用OpenCV实现了视频中基于Lucas-Kanade光流算法【OpenCV中的实现为calcOpticalFlowPyrLK函数】的对象跟踪。为了规避孔径问题,以下代码实现仅对角点【通过goodFeaturesToTrack函数做角点检测】做光流计算。//// main.cpp// opencv-learning//// Created by _R on 2019/1/9.// C

2019-01-17 11:00:51 1117

原创 OpenCV 基于色彩的对象检测与跟踪

视频来源:https://www.youtube.com/watch?v=EvIwL0aSCZY以下代码用OpenCV实现了视频中基于色彩的对象检测与跟踪,该方法受光照变化影响较大。//// main.cpp// opencv-learning//// Created by _R on 2019/1/9.// Copyright © 2019 _R. All rights reserved.//#include <iostream>#include <open

2019-01-15 14:28:03 632

原创 OpenCV 背景消除和提取

视频来源:https://www.youtube.com/watch?v=oHFr0R6jQ6I以下代码用OpenCV实现了视频中背景消除和提取的建模,涉及到KNN(K近邻算法)和GMM(高斯混合模型)。//// main.cpp// opencv-learning//// Created by _R on 2019/1/9.// Copyright © 2019 _R. All rights reserved.//#include <iostream>#inclu

2019-01-13 21:36:29 18982 2

翻译 Lucas-Kanade光流算法 — Lucas-Kanade Method

Lucas-Kanade光流算法

2019-01-09 00:28:20 967

翻译 Horn–Schunck光流算法 — Horn–Schunck Method

Horn-Schunck光流算法

2018-12-29 16:36:58 5584

原创 光流 — Optical Flow

光流是环境中物体和照相机发生相对移动,物体投影在图像或者视网膜上的运动轨迹,即像素的移动。我们期望通过分析图像序列中像素变化来计算环境中物体和照相机所发生的相对运动轨迹。光流有一个前提假设:图像采集的时间间隔很小,因此,图像中某点像素的位置变化范围较小。且该点像素位置变化前后,其像素值保持不变。即:I(x,y,t)=I(x+Δx,y+Δy,t+Δt)I(x,y,t) = I(x+\Delta{x}, y+\Delta{y},t+\Delta{t})I(x,y,t)=I(x+Δx,y+Δy,t+Δt)

2018-12-27 13:45:05 1027

翻译 泰勒展开 — Taylor Expansion

泰勒展开

2018-12-14 14:29:08 17171

翻译 孔径问题 — The Aperture Problem

孔径问题

2018-12-10 16:30:20 7052 2

翻译 离散非周期信号傅里叶变换 — Fourier Transform of Discrete-Time Aperiodic Signals

离散非周期信号傅里叶变换

2018-11-30 19:15:52 3828

翻译 离散周期信号傅里叶级数 — Fourier Series of Discrete-Time Periodic Signals

离散周期信号傅里叶级数

2018-11-29 12:34:11 1907

翻译 连续非周期信号傅里叶变换 — Fourier Transforms of Continuous-Time Aperiodic Signals

连续非周期信号傅里叶变换

2018-08-13 17:05:34 3310

翻译 连续周期信号傅里叶级数 — Fourier Series of Continuous-Time Periodic Signals

连续周期信号傅里叶级数

2018-08-01 17:52:43 1965

翻译 卷积神经网络 — Convolutional Neural Network

卷积神经网络

2018-01-22 15:18:12 744

原创 Backpropagation Algorithm Implementation

数据来源:http://yann.lecun.com/exdb/mnist/以下代码实现了一个三层的神经网络,其激活函数为sigmod functionsigmod\ functionsigmod function。笔者运行了多次都遇到了sigmodsigmodsigmod梯度消失,模型预测效果蛮差。读者也可试试其它激活函数。阅读本程序可助于深入理解神经网络和反向传播算法。import osimport numpy as npimport randomfrom mnist im

2018-01-06 23:02:42 308 1

原创 Networks with Linear Activation Function

import numpy as npimport matplotlib.pyplot as plt%matplotlib inlineFor Linear Separable Problem#inputX = np.array([[1,0,0], [1,0,1], [1,1,0], [1,1,1]])#labelY = np.array([-1,1,1,1])#weights vectorW = np.r

2018-01-03 11:11:39 1044

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除