- 博客(50)
- 收藏
- 关注
原创 x86 Ubuntu上建立aarch64/arm64 Ubuntu的交叉编译链
x86 Ubuntu 上建立aarch64/arm64的交叉编译链注意:x86 Ubuntu下构建的aarch64 Ubuntu版本需要和程序最终运行的aarch64 Ubuntu的版本保持一致(如果x86 Ubuntu版本和构建的aarch64 Ubuntu版本一致,安装aarch64的编译工具会简单一些,直接apt。本文以Ubuntu 20.04.03举例)。准备aarch64(即arm64)的文件系统rootfs;从http://cdimage.ubuntu.com/ubuntu-base
2021-10-30 12:12:05 5567 3
原创 为什么structure from motion只能提取出物体的比例信息?
首先,构建一个相机移动的模型。假设相机通过旋转矩阵RRR和位移向量TTT从prp_{r}pr的位置移动到plp_{l}pl的位置。世界坐标系中的物体PPP在不同位置的相机坐标系中的坐标是PrP_{r}Pr和PlP_{l}Pl。PPP和PlP_{l}Pl、PPP和PrP_{r}Pr之间的替换公式为:[XlYlZl]=Pl=RlP+Tl=Rl[XYZ]+Tl[XrYrZr]=Pr=RrP+Tr=Rr[XYZ]+Tr\begin{bmatrix} X_{l} \\ Y_{l} \\ Z_{l} \
2020-04-01 19:34:26 268
原创 主成分分析 -- Principal Components Analysis
如今,数据挖掘和机器学习常面对高维数据(X∈RdX \in \R^{d}X∈Rd)。为了应对高维数据,数据预处理通常需要对数据做降维处理(Y=f(X)∈Rp,p≪dY = f(X) \in \R^{p}, p \ll dY=f(X)∈Rp,p≪d)。在降低数据维度的同时,要尽可能的保留原有的数据信息。主成分分析便是一种常用的降维方法。它在降维的同时尽可能的保留原数据的方差信息。假设我们有下图中的二维数据(X=[x1,x2]TX = [x_{1}, x_{2}]^{T}X=[x1,x2]T),我们想将其
2019-11-16 22:09:35 457
原创 OpenCV 基于色彩直方图进行肤色检测
色彩直方图是统计不同色彩在图像中的像素个数。例如,下图的猫咪在RGB色彩空间中每通道的灰度直方图(线条的颜色与其通道相对应)。将图像转为HSV色彩空间(Hue:色调;Saturation:饱和度;Value:亮度),我们可以更稳定地提取特定的颜色。本示例采用HSV色彩空间的H、S通道来进行颜色提取。H、S通道下的色彩直方图二维的展现形式如下(竖列为Hue通道,横行为Saturation通道,图像中的像素亮度越高,表明该色彩在原始图像中出现的频次越高):程序执行过程:截取若干张不同肤色的图片,最
2019-11-09 04:25:43 1097 15
原创 Active Shape Model Implementation
Dataset:https://personalpages.manchester.ac.uk/staff/timothy.f.cootes/data/talking_face/talking_face.htmlstep 1: load images and pointsimport cv2from matplotlib import pyplot as pltimport osimport mathimport numpy as np%matplotlib inlinerandom_ind
2019-07-12 21:12:23 436
原创 Face Swapping
Dataset: https://personalpages.manchester.ac.uk/staff/timothy.f.cootes/data/talking_face/talking_face.htmlstep 1: load images and pointsimport cv2from matplotlib import pyplot as pltimport osimport numpy as np%matplotlib inlinerandom_ind = np.rando
2019-06-29 13:48:13 957
原创 Start Face Recognition by PCA from scratch
Dataset: http://vision.ucsd.edu/content/yale-face-databaseImage pre-processingstep 1: convert images in gif to images in jpgimport osfrom PIL import Imageimport filetypeimages_dir = "./yalefaces/"for file in os.listdir(images_dir): if filetype
2019-06-21 19:46:52 314
原创 Face Recognition with OpenCV built-in recognizer
Dataset: http://vision.ucsd.edu/content/yale-face-databaseImage pre-processingstep 1: convert images in gif to images in jpgimport osfrom PIL import Imageimport filetypeimages_dir = "./yalefaces/"for file in os.listdir(images_dir): if filetype
2019-06-20 11:27:10 205
原创 八皇后问题
对于检测同一斜线上是否有多皇后,可以将正/反对角线上下移动(即col值保持不变,row值加减),并只考虑棋盘内坐标(如下图)。最终采用回溯法求解八皇后问题,共有92种解。main.cpp//// main.cpp// Eight_queens//// Created by _R on 2019/4/24.// Copyright © 2019 _R. All rights reserved.//#include <iostream>#include "ChessB
2019-04-24 19:41:58 331
原创 OpenCV 基于CAMShift算法的对象检测与跟踪
视频来源:http://edu.51cto.com/course/8837.html?source=so以下代码用OpenCV实现了视频中基于CAMShift算法的对象检测与跟踪,该方法实质上仍然是基于色彩的对象跟踪,不过是在HSV色彩空间,选取Hue通道,一定程度上降低了光照变化所造成的影响。//// main.cpp// opencv-learning//// Created by _R on 2019/1/9.// Copyright © 2019 _R. All rights
2019-02-20 21:24:00 541 1
原创 OpenCV 基于Lucas-Kanade光流算法的对象跟踪
视频来源:https://www.youtube.com/watch?v=EvIwL0aSCZY以下代码用OpenCV实现了视频中基于Lucas-Kanade光流算法【OpenCV中的实现为calcOpticalFlowPyrLK函数】的对象跟踪。为了规避孔径问题,以下代码实现仅对角点【通过goodFeaturesToTrack函数做角点检测】做光流计算。//// main.cpp// opencv-learning//// Created by _R on 2019/1/9.// C
2019-01-17 11:00:51 1117
原创 OpenCV 基于色彩的对象检测与跟踪
视频来源:https://www.youtube.com/watch?v=EvIwL0aSCZY以下代码用OpenCV实现了视频中基于色彩的对象检测与跟踪,该方法受光照变化影响较大。//// main.cpp// opencv-learning//// Created by _R on 2019/1/9.// Copyright © 2019 _R. All rights reserved.//#include <iostream>#include <open
2019-01-15 14:28:03 632
原创 OpenCV 背景消除和提取
视频来源:https://www.youtube.com/watch?v=oHFr0R6jQ6I以下代码用OpenCV实现了视频中背景消除和提取的建模,涉及到KNN(K近邻算法)和GMM(高斯混合模型)。//// main.cpp// opencv-learning//// Created by _R on 2019/1/9.// Copyright © 2019 _R. All rights reserved.//#include <iostream>#inclu
2019-01-13 21:36:29 18982 2
原创 光流 — Optical Flow
光流是环境中物体和照相机发生相对移动,物体投影在图像或者视网膜上的运动轨迹,即像素的移动。我们期望通过分析图像序列中像素变化来计算环境中物体和照相机所发生的相对运动轨迹。光流有一个前提假设:图像采集的时间间隔很小,因此,图像中某点像素的位置变化范围较小。且该点像素位置变化前后,其像素值保持不变。即:I(x,y,t)=I(x+Δx,y+Δy,t+Δt)I(x,y,t) = I(x+\Delta{x}, y+\Delta{y},t+\Delta{t})I(x,y,t)=I(x+Δx,y+Δy,t+Δt)
2018-12-27 13:45:05 1027
翻译 离散非周期信号傅里叶变换 — Fourier Transform of Discrete-Time Aperiodic Signals
离散非周期信号傅里叶变换
2018-11-30 19:15:52 3828
翻译 离散周期信号傅里叶级数 — Fourier Series of Discrete-Time Periodic Signals
离散周期信号傅里叶级数
2018-11-29 12:34:11 1907
翻译 连续非周期信号傅里叶变换 — Fourier Transforms of Continuous-Time Aperiodic Signals
连续非周期信号傅里叶变换
2018-08-13 17:05:34 3310
翻译 连续周期信号傅里叶级数 — Fourier Series of Continuous-Time Periodic Signals
连续周期信号傅里叶级数
2018-08-01 17:52:43 1965
原创 Backpropagation Algorithm Implementation
数据来源:http://yann.lecun.com/exdb/mnist/以下代码实现了一个三层的神经网络,其激活函数为sigmod functionsigmod\ functionsigmod function。笔者运行了多次都遇到了sigmodsigmodsigmod梯度消失,模型预测效果蛮差。读者也可试试其它激活函数。阅读本程序可助于深入理解神经网络和反向传播算法。import osimport numpy as npimport randomfrom mnist im
2018-01-06 23:02:42 308 1
原创 Networks with Linear Activation Function
import numpy as npimport matplotlib.pyplot as plt%matplotlib inlineFor Linear Separable Problem#inputX = np.array([[1,0,0], [1,0,1], [1,1,0], [1,1,1]])#labelY = np.array([-1,1,1,1])#weights vectorW = np.r
2018-01-03 11:11:39 1044
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人