(Java)LeetCode-60. Permutation Sequence

The set [1,2,3,…,n] contains a total of n! unique permutations.

By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):

  1. "123"
  2. "132"
  3. "213"
  4. "231"
  5. "312"
  6. "321"

Given n and k, return the kth permutation sequence.

Note: Given n will be between 1 and 9 inclusive.


这道题是个比较巧妙的问题,但并不是很难。


首先确定第一个数。因为是n的数的全排列,第一个数确定之后,剩下的数共有(n-1)!种可能性。所以要计算出第 kth 个全排列含有多少个(n-1)!了,比如有m个,那么第一个数就应该是m+1. 之后再确定第二个数,和第一个思路一样,只不过k要变成  k - m * (n-1)!   ,如此循环即可。

PS. 用一个布尔数组标记这个数是否被用过,用过的话直接跳过。代码如下:


public class Solution {  
    public String getPermutation(int n, int k) {
		int[] fac = { 1,1,2,6,24,120,720,5040,40320,362880};
		boolean[] flags = new boolean[n];
		StringBuilder st = new StringBuilder();
		getPermutation(st, flags, fac, n, k);
        return st.toString();
    }
	private void getPermutation(StringBuilder st, boolean[] flags, int[] fac, int n, int k) {
		// TODO Auto-generated method stub
		while(true){
		if(n == 1){
			for(int i = 0; i < fac.length; i++ ){
				if(flags[i] == false){
					st.append(i+1);
					return;
				}
			}
		}
		
		int level = (k-1)/fac[n-1];
		k = k - level * fac[n-1];
		for(int i = 0; i < fac.length; i++){
			if(flags[i] == false){
				if(level == 0){
					st.append(i+1);
					flags[i] = true;
					break;
				}
				level--;
			}
		}
		n--;
		}
	}
	
	
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值