[二分] 最大化平均值

有n个物品的重量和价值分别是wi和vi,从中选出k个物品,使得单位重量的价值最大。
1≤k≤n≤10^4
1≤wi,vi≤10^6

样例输入:
n = 3
k = 2
w1=2 v1=2
w2=5 v2=3
w3=2 v3=1

输出:
0.75(如果选1号和3号物品,平均价值是(2+1)/(2+2) = 0.75)

一般最先想到的方法可能是把物品按照单位价值进行排序,从大到小贪心地进行选取。但是这个方法对于样例输入得到的结果是5/7 = 0.714 ,所以这个方法是不可行的。

这个问题可以用二分搜索法很好地解决。我们定义:
条件C(x) = 可以选择使得单位重量的价值不小于x

因此,原问题就变成了求满足C(x)的最大的x。要判断C(x)是否可行,就是求

  • ΣVi / ΣWi ≥ x

所以

  • Σ(Vi - x * Wi) ≥ 0

因此,可以对(Vi - x * Wi) 的值进行排序,贪心地进行选取。
因此就变成了(C(x) = (vi-x*wi)从大到小排列中前k个的和不小于0)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
int n,k;
const int INF =0x3f3f3f3f;
const int MAXN = 100010;
int W[MAXN],V[MAXN];
double y[MAXN];
bool C(double x)
{
    for(int i = 0;i<n;i++)
    {
        y[i] = V[i] - x * W[i];
    }
    sort(y,y+n);
    double sum = 0;
    for(int i = 0; i < k;i++)
    {
        sum += y[n-i-1];
    }
    return sum>=0;
}

int main()
{
    scanf("%d%d",&n,&k);
    for(int i = 0; i < n; i++)
        scanf("%d%d",&W[i],&V[i]);

    double lb = 0,ub = INF;
    for(int i = 0;i<=50;i++)
    {
        double mid = (lb + ub) / 2;
        if(C(mid)) lb = mid;
        else ub = mid;
    }
    printf("%.2f\n",ub);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值