有n个物品的重量和价值分别是wi和vi,从中选出k个物品,使得单位重量的价值最大。
1≤k≤n≤10^4
1≤wi,vi≤10^6
样例输入:
n = 3
k = 2
w1=2 v1=2
w2=5 v2=3
w3=2 v3=1
输出:
0.75(如果选1号和3号物品,平均价值是(2+1)/(2+2) = 0.75)
一般最先想到的方法可能是把物品按照单位价值进行排序,从大到小贪心地进行选取。但是这个方法对于样例输入得到的结果是5/7 = 0.714 ,所以这个方法是不可行的。
这个问题可以用二分搜索法很好地解决。我们定义:
条件C(x) = 可以选择使得单位重量的价值不小于x
因此,原问题就变成了求满足C(x)的最大的x。要判断C(x)是否可行,就是求
- ΣVi / ΣWi ≥ x
所以
- Σ(Vi - x * Wi) ≥ 0
因此,可以对(Vi - x * Wi) 的值进行排序,贪心地进行选取。
因此就变成了(C(x) = (vi-x*wi)从大到小排列中前k个的和不小于0)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
int n,k;
const int INF =0x3f3f3f3f;
const int MAXN = 100010;
int W[MAXN],V[MAXN];
double y[MAXN];
bool C(double x)
{
for(int i = 0;i<n;i++)
{
y[i] = V[i] - x * W[i];
}
sort(y,y+n);
double sum = 0;
for(int i = 0; i < k;i++)
{
sum += y[n-i-1];
}
return sum>=0;
}
int main()
{
scanf("%d%d",&n,&k);
for(int i = 0; i < n; i++)
scanf("%d%d",&W[i],&V[i]);
double lb = 0,ub = INF;
for(int i = 0;i<=50;i++)
{
double mid = (lb + ub) / 2;
if(C(mid)) lb = mid;
else ub = mid;
}
printf("%.2f\n",ub);
return 0;
}