- 博客(303)
- 资源 (5)
- 收藏
- 关注
原创 【python | pytorch】 openpyxl不存在:ImportError: Missing optional dependency ‘openpyxl‘. Use pip or conda
摘要:遇到"ImportError: Missing optional dependency 'openpyxl'"错误提示,表明缺少openpyxl库。解决方法是通过conda或pip安装该依赖包:执行"conda install openpyxl"或"pip install openpyxl"命令即可解决问题。该错误通常出现在需要处理Excel文件时,安装后即可正常使用相关功能。
2026-01-16 22:51:27
202
原创 [python | numpy] numpy& matplotib冲突
摘要 本文分析了NumPy与Matplotlib库版本冲突导致的"DLL load failed"错误问题。主要原因在于混合使用conda和pip安装包导致依赖冲突。解决方案包括:1)强制重装NumPy;2)彻底卸载相关库后重新安装。核心建议是遵循"Conda为主,Pip为辅"的安装原则,避免两种包管理器混用。对于数据科学开发者,规范安装方式是防止此类低级错误的关键。文中提供了两种具体解决步骤,从简单重装到彻底清理重装,逐步解决问题。
2026-01-16 22:44:52
375
原创 【无标题】
摘要 "房间里的大象"(the elephant in the room)是一个英语隐喻习语,指那些显而易见却被刻意回避的重要问题或争议性话题。这个表达描述的是所有人都心知肚明,却因话题令人不适、尴尬或敏感而无人提及的状况。承认"房间里的大象"意味着公开面对这个被回避的问题,讨论其影响并寻求解决方案。该概念源于社会心理学,反映了人们在社交场合中对敏感话题的集体沉默现象。
2026-01-04 19:29:13
343
原创 【English】English in 3 mins | English Class 101
这篇英语学习材料包含基础问候语教学和初级测试。主要内容包括:1) 常见问候问答,如"How are you?"及回答方式(I'm fine/good/bad等);2) 简单对话练习;3) 初级水平测试题,考察日常对话填空能力。测试部分包含三个选择题,涉及商务场景、朋友重逢和学业讨论等实用情境。材料采用简洁的对话形式,适合英语初学者快速掌握基础交流用语。
2026-01-03 13:05:38
337
原创 【python| pytorch | pip 】scipy scikit-learn numpy版本不兼容后,又导致numyp scikit-learn与pandas不兼容
本文介绍了解决Pandas与Numpy版本冲突导致"ABI不兼容"错误的方法。首先通过pip卸载Pandas并手动清理残留文件,然后使用conda统一安装Pandas、Numpy、Scipy和Scikit-learn,让conda自动计算兼容版本。关键提示:1)不要随意卸载numpy以免破坏PyTorch依赖;2)先pip清理再conda统一管理可有效解决版本冲突。这种方法既保持了PyTorch环境稳定,又解决了库之间的兼容性问题。
2025-12-20 22:30:24
652
原创 【python | pytorch | pip |】conda pip谁更胜一筹?
摘要:对于数据科学相关的Python库(如Numpy/Scipy等),Conda比Pip更安全稳定。Conda能管理二进制依赖,确保底层C库兼容性,而Pip可能因系统环境不匹配导致错误。建议优先使用Conda安装涉及底层计算的库,仅在安装纯Python小工具库时使用Pip。在Anaconda环境下,应避免混用两者,推荐执行conda install numpy scipy scikit-learn命令进行安装,Conda会自动处理版本兼容性问题,提升运行性能和稳定性。
2025-12-20 22:16:44
675
原创 【python| pytorch】卸载py库,手动法
手动删除Python包是可行的,甚至比pip uninstall更彻底。标准操作是: 关闭Python进程 进入site-packages目录 删除目标包文件夹及对应的.dist-info文件夹 特别注意删除numpy、scipy、sklearn等包及其元数据 完成后再重新安装 这种方法能清除残留文件,确保安装环境完全干净。但操作前建议备份,并确认删除正确的文件。
2025-12-20 22:12:43
263
原创 【python | pytorch | 】.报错怎么找到问题所在?
摘要:文章通过分析Python报错栈(Traceback)演示了如何定位SciPy和Sklearn的版本冲突问题。关键线索包括:调用链显示Sklearn依赖SciPy,最终报错指向SciPy底层C接口签名错误。这表明SciPy编译时使用的Numpy/C库版本与当前环境不匹配。解决方法是同时重装三者,确保版本兼容。该案例不仅展示了具体错误排查过程,更传授了通过报错信息定位依赖冲突的通用方法。(149字)
2025-12-20 22:11:54
367
原创 【python | pytorch | scipy】scipy scikit-learn库相互依赖?
Conda在卸载scipy时会同时移除依赖它的scikit-learn,因为后者无法独立运行。卸载前会明确提示将被移除的包列表(包括scikit-learn),不会静默操作。这种透明机制确保用户了解完整的依赖关系变更,避免意外删除关键组件。
2025-12-20 22:05:41
193
原创 【python | pytorch | warehouse】python库scipy与scikit-learn库不兼容?
摘要 文章分析了Python科学计算环境中常见的scipy与scikit-learn版本兼容性问题,重点讨论了二进制兼容性错误的解决方案。当出现"_qhull"相关错误时,建议优先重建环境而非修复。作者详细比较了pip和conda的依赖管理机制,指出conda在科学计算领域更可靠,因其能全面检查C/C++二进制库兼容性等底层问题。文章提供了最佳实践:先用conda安装核心科学包(如numpy、scipy),仅在conda无包时使用pip补充。此外,还解释了conda中remove与uni
2025-12-20 21:49:34
660
原创 【python | pytorch | torch】导包错误,不能从**中导入***【ImportError】cannot import name ‘***‘ from ‘***‘
本文分析了Python中常见的ImportError问题,重点讨论了"cannot import name 'deprecated'"错误的解决方法。当出现此类导入错误时,通常是由于依赖版本冲突导致,特别是当PyTorch等库需要较新版本的typing_extensions时。解决方案包括:检查并卸载旧版本依赖、手动删除残留文件、重新安装最新版本。通过升级typing_extensions库或使用conda更新,可以有效解决这类依赖不兼容问题。文章提供了详细的命令行操作步骤和截图指导,强
2025-12-20 18:49:53
747
原创 【python | pytorch | Pythonic】什么是 “Pythonic“ 代码风格?
"Pythonic"代码风格指遵循Python语言特性的自然、简洁、优雅的编码方式。核心特点包括:1)使用类属性替代字典配置,提升可读性和IDE支持(如Config.BATCH_SIZE);2)显式优于隐式,使用if name == 'main'明确程序入口;3)善用语言特性,如列表推导式和解包(a,b = b,a)。Pythonic代码具有英语般的可读性,充分利用语言特性避免冗余,是Python社区的高度认可标准。
2025-12-20 18:01:57
287
原创 【Linear Mathematics | 线性代数 | Matrix Theory |矩阵论】RREF的Pivot(主元)是什么?怎么找主元?
简单来说,**主元(Pivot)**就是 RREF(行最简形矩阵)中,每一行第一个非零的“1”。在 RREF 中,每一行最左边的那个“1”就是主元;这些“1”在哪一列,哪一列就是主元列。piovt: 在RREF(行最简行矩阵)中,每一行第一个非零的“1”,成为主元。“找主元”是矩阵运算中最基础也最核心的技能。在**“满秩分解”中非常关键。我们可以把找主元的过程想象成。
2025-12-19 21:06:24
596
原创 【VSCode | python | anaconda | cmd | PowerShell】在没有进入conda环境时使用conda命令默认安装位置
Conda和pip的默认安装位置取决于环境状态:未激活conda环境时,conda安装到base环境(Anaconda目录下的site-packages),而pip会使用系统默认Python或PATH中的第一个Python;激活conda环境后,两者都会安装到当前环境的site-packages目录下。环境路径示例显示base环境与自定义环境(如myenv)的安装位置差异。
2025-12-19 20:13:51
274
原创 【VSCode | python | anaconda | cmd | PowerShell】VSCode中cmd | PowerShell(PS)的区别以及两者中怎么使用正确使用conda
摘要: VSCode中PowerShell(PS)和CMD终端的主要区别在于:PS功能更强但需初始化,CMD简单且原生支持conda。在PS中激活conda需先执行conda init powershell并重启VSCode;在CMD中则用conda init cmd.exe。推荐方案:直接通过VSCode的Python扩展(Ctrl+Shift+P搜索"Python: Select Interpreter")选择conda环境,避免终端激活的复杂问题。conda/pip默认安装到当前激
2025-12-19 20:11:56
597
原创 【Anaconda | Python | pytorch】sklearn scikit-learn 报错:
摘要:本文分析了VS Code中出现的"Import sklearn.model_selection could not be resolved from source"错误。该错误属于IDE智能提示问题(Pylance扩展),而非运行时错误,主要表现为无法提供代码补全和跳转功能。可能原因包括:1)scikit-learn包未正确安装(可通过pip/conda命令检查);2)Python环境配置错误,如选择了错误的解释器。建议用户检查包安装状态和环境配置情况。
2025-12-19 19:36:20
919
原创 【Anaconda | conda | dtcwt】 conda 安装,解决anaconda下安装报错:PackagesNotFoundError
摘要:当使用conda install dtcwt安装失败时,主要原因是该包不在Anaconda默认镜像源中。推荐解决方案:1)直接使用pip install dtcwt(最佳方案);2)尝试通过conda第三方源安装(如conda install -c conda-forge dtcwt);3)手动下载安装。建议优先使用pip安装,因其能访问PyPI上的几乎所有Python包。若使用conda环境,需先激活目标环境再执行pip安装。
2025-12-19 15:44:33
596
原创 [Python | pytorch | torchvision ] models like ResNet... 命名变量说明
在 PyTorch 深度学习模型中,`num_ftrs` 是一个常用的变量命名,它是 "**number of features**"(特征数量)的缩写。这个变量通常出现在以下场景中:### 主要用途在**迁移学习**场景中最常见,特别是当你使用预训练模型(如 ResNet、VGG、AlexNet 等)并修改最后的分类层时:```pythonimport torch.nn as nnimport torchvision.models as models# 加载预训练模型model =
2025-12-19 12:20:01
632
原创 【Linux | Windows | Terminal Command】 Linux---grep | Windows--- findstr
本文介绍了Windows和Linux系统中常用的文本搜索命令。Linux系统主要使用grep命令进行文本搜索,而Windows系统则提供了功能相似的findstr命令。此外,Windows用户也可以通过安装WSL或Grep for Windows工具来使用原生的grep命令,实现与Linux系统相同的文本处理功能。
2025-12-18 19:40:52
219
原创 【pytorch | torchvision | datasets】ImageFolder()类
ImageFolder是torchvision中一个通用的图像数据加载器类,继承自DatasetFolder。它默认要求图像按类别存储在子文件夹中(如root/dog/xxx.png)。主要参数包括:root(数据集根路径)、transform(图像预处理函数,如RandomCrop)、target_transform(目标转换函数)、loader(图像加载函数)等。其中transform函数不会立即执行,而是在需要数据时才应用。该类还支持验证文件有效性及处理空文件夹选项。
2025-12-18 15:36:53
799
原创 【Ubuntu】怎么查询Nvidia显卡信息
本文介绍了在Ubuntu系统中查询NVIDIA显卡信息的多种方法。对于未安装驱动的情况,可使用lspci | grep -i nvidia查看设备ID并在线查询;已安装驱动时,nvidia-smi可显示基础信息,nvidia-smi -l 1可实时监控GPU状态。此外,还可安装nvidia-settings或hardinfo获得图形界面查看详细参数。这些方法适用于Ubuntu 20.04/22.04等版本,能全面展示显卡信息。
2025-12-17 20:48:20
508
原创 【数学 | 大学数学 | 考研数学 | 计算机】线性代数 | 矩阵论
本文介绍了求逆矩阵的两种方法:伴随矩阵法和三步口诀法。伴随矩阵法的口诀是"主对角互换,副对角变号"。逆矩阵的三步计算口诀包括:1)计算行列式;2)求伴随矩阵;3)用伴随矩阵除以行列式。文中配有示意图辅助理解这两种求逆矩阵的方法。
2025-12-13 22:28:13
228
原创 【ubutun OS】乌班图系统在连接校园网或者企业网络每次需要跳转连接时却不自动弹出的处理办法
摘要:本文记录了解决开机后有线网络不自动弹出认证页面的过程。通过检查网络状态、IP分配情况,发现虽然网络已激活但未获取IP。最终通过释放并重新获取IP地址(使用dhclient命令)成功触发认证页面弹出。关键步骤包括确认网络连接状态、检查IP分配、重启网络管理服务和重新获取IP地址。该方法适用于类似网络认证不自动弹出的情况。
2025-12-08 11:27:11
378
原创 【Power Grid | Peak Sharing | 】“削峰填谷”
摘要:削峰填谷是电力系统中的重要策略,旨在平衡用电负荷,通过调节高峰和低谷时段的用电量来提升电网稳定性。该策略可降低高峰负荷,提高设备利用率,实现经济效益。常见措施包括分时电价、储能技术等,广泛应用于工业、商业和居民用电领域。
2025-12-06 10:42:31
114
原创 【ML|DL|python|pytorch|Dataset】Datasets & DataLoader
本文介绍了PyTorch中Dataset和DataLoader的核心功能。Dataset类通过实现__getitem__方法,使数据集可以像列表一样索引访问,该方法接收索引参数并返回对应样本数据。文章通过FashionMNIST数据集示例,展示了如何使用随机索引获取样本并可视化。DataLoader则基于Dataset的__getitem__方法实现高效批量数据加载。重点解析了torch.randint()生成随机索引的过程,以及squeeze()方法调整数据维度以适应可视化需求。这两个组件共同构成了PyT
2025-12-06 10:16:21
1077
原创 【电网 | 电网技术】V2L,V2G,V2H区别
本文对比了三种车用能源技术:V2L(车对负载)实现汽车向外部设备单向供电,适用于户外用电和应急场景,即插即用;V2H(车对家)通过双向充电桩实现汽车与家庭电网能量交互,用于家庭储能和备用电源;V2G(车对电网)支持汽车与电网双向充放电,用于电网调峰和大规模储能,需电网基础设施支持。三种技术在能量流向、应用场景和系统复杂度上存在明显差异。
2025-12-04 22:22:53
245
原创 【ML|DL |python|pytorch|】基础学习
本文介绍了Anaconda环境配置与PyTorch基础操作。主要内容包括:1)使用conda检查和管理Python、PyTorch等环境;2)创建/删除conda环境的技巧;3)PyTorch张量(tensor)的基本创建方法(ones_like, rand等)和属性(dtype, shape等);4)关键张量操作函数(is_tensor, numel, cat等)的用法,重点讲解了torch.cat()在不同维度拼接三维张量的原理和效果。文章通过代码示例和形象比喻(如"千层饼"、&qu
2025-12-03 21:04:27
876
原创 【VMWare | XFTP | FinalShell】FinalShell安装与连接
FinalShell是一款免费的国产SSH工具,提供图形化操作界面。官网提供安装指南和配置教程,包含Windows系统下的安装步骤图示。软件安装过程中需注意WinPcap组件的配置。使用说明中详细展示了连接CentOS系统的操作流程,包括服务器连接设置和终端界面示意图。同时官网也提供了Ubuntu系统的连接方法参考。该工具适合需要可视化SSH管理的用户使用,相关教程可在hostbuf.com获取。
2025-12-03 15:45:16
160
原创 【Python | Anaconda】 python-Anaconda 一些命令使用
本文介绍了Anaconda环境管理的基本操作:1)使用conda env list或conda info -e查看所有环境;2)通过conda activate 环境名切换环境,conda deactivate返回base环境;3)使用conda list查看当前环境安装的包,或conda list -n 环境名查看指定环境的包;4)可通过管道命令筛选特定包(Windows用findstr,Linux/Mac用grep)。文中还解释了查询结果中各列的含义,帮助用户区分conda和pip安装的包。
2025-12-02 21:41:03
970
原创 [python ]anaconda
安装google-generativeai时报错解决方法:首先需手动删除Anaconda的site-packages目录下以~或-开头的临时文件夹(如~orch),清理安装失败的残留文件;然后重新执行pip install命令。验证是否安装成功可通过pip show google-generativeai命令查看版本信息。若未显示版本号,需再次运行不带-q参数的安装命令以便查看详细安装进度。该方法有效解决了因临时文件冲突导致的pip安装报错问题。
2025-12-01 16:58:47
252
原创 【Google】Google的反重力代理Aengt
摘要:用户反映Google反重力代理Aengt软件登录时无法跳转,通过将系统语言改为英语、开启TUN模式后成功跳转,但又遇到年龄未满18岁的报错提示。目前尚不清楚是否需要上传证件(postcard)来解决年龄验证问题,寻求进一步解决方案。
2025-11-22 11:27:42
315
原创 【Zotero】pdf2zh plugin
Zetero 用户迎来了实用的 PDF 翻译插件 pdf2zh,该插件可直接在文献管理软件中翻译 PDF 文档中文内容,支持保留原文格式和注释。安装简单,通过 Zetero 插件商店添加即可使用。插件采用智能翻译引擎,能准确处理学术术语,提升非中文用户阅读中文文献的效率。特别适合科研人员快速获取中文论文的核心内容,是跨语言学术研究的实用工具。
2025-11-16 21:25:41
159
原创 【最优化方法|optimization method】无约束搜索
无约束优化核心概念摘要 本文系统梳理了无约束优化的关键理论。首先阐明极值条件:一阶必要条件要求梯度为零,二阶必要条件要求海森矩阵正半定,而正定条件则构成严格极小的充分条件。针对下降方向,指出其数学定义为梯度与方向内积为负。最速下降法的核心特性在于:搜索方向为负梯度方向,且采用精确线搜索时相邻方向正交。最后强调凸函数的特殊性质——梯度为零即为全局最优解的充要条件,区别于一般函数的局部极值条件。
2025-11-09 10:46:41
945
原创 【概率】泊松分布 泊松过程
泊松分布描述固定时间段内稀有事件发生次数的概率分布,适用于电话呼叫、地震等场景。其概率质量函数基于离散事件建模,广泛应用于质量控制、保险精算等领域。泊松过程是泊松分布的时间推广,描述事件发生的随机序列,具有独立增量和平稳性特征,参数λ表示单位时间发生率。事件间隔时间服从指数分布,体现无记忆特性。泊松过程在排队论、网络通信和可靠性分析中有重要应用。两者共同构成分析随机事件发生频率和时间点的理论基础。
2025-10-12 13:06:14
498
原创 【IDEA | AI | Cursor】 cursor 2025 安装教程
这篇文章主要通过多张配图展示内容,但缺少文字说明。图片内容涉及多个主题,包括技术图表、数据展示等。由于缺乏详细的文字描述和上下文,难以准确概括文章主旨。建议补充相关文字说明,以便读者更好地理解作者意图和重点内容。
2025-10-10 14:56:10
410
原创 【】svm 模型泛化能力
摘要:在监督学习中,正确评估模型泛化能力需严格划分训练集和测试集。模型仅从训练集学习,然后对测试集(其真实标签对模型保密)进行预测。通过对比预测结果与测试集真实标签,使用准确率等指标评估模型效果。评估时需注意:1)训练与测试数据必须完全隔离;2)测试集对模型表现为"新数据";3)除准确率外,还需根据任务需求选择精确率、召回率、F1值或AUC等更全面的评估指标,尤其在不平衡数据集中,单一准确率可能产生误导。该逻辑准确反映了模型评估的核心原则。
2025-10-10 14:55:05
917
原创 【machine learning _ pattern recognition_SVM】SVM --- hardwritting_digit_dataset recognition
数据缩放(Feature Scaling)是机器学习预处理的关键步骤,尤其对基于距离和梯度下降的算法至关重要。MinMaxScaler是常用的归一化方法,通过将特征值线性变换到[0,1]区间来消除量纲差异。其核心公式为X_scaled=(X-X_min)/(X_max-X_min)。使用时需先实例化scaler对象,通过fit_transform()方法同时学习特征极值并转换数据,测试集则只需transform()以避免数据泄露。该方法简单有效但易受异常值影响。合理的数据缩放能提升模型收敛速度和性能。
2025-10-09 21:49:56
986
原创 【python Anconada】
摘要:当在Jupyter Notebook中遇到"numpy.ndarray object is not callable"错误时,通常是因为confusion_matrix函数被同名变量覆盖。解决方法包括:1)重启Jupyter Kernel(推荐);2)重新导入函数from sklearn.metrics import confusion_matrix。注意要使用不同变量名(如conf_matrix_dt)存储结果,并确保在整个会话中保持函数名称不被覆盖。混淆矩阵返回值本就是nump
2025-10-07 17:22:07
344
原创 【SpringBoot】统一表现层数据格式 | 表现层消息一致性处理
本文针对API数据格式不一致的问题,提出标准化解决方案。建议统一采用JSON格式返回数据,并通过R/Result类建立前后端数据协议。该方案包含三个关键字段:code(状态码)、data(业务数据)和message(提示信息),能有效区分正常返回、查询空值(data:null)和异常情况(code标识)。这种结构化响应既解决了NULL值歧义问题,又提升了接口可维护性,使前端处理逻辑更加清晰统一。
2025-09-26 20:09:20
237
原创 【pycharm---pytorch】pycharm配置以及pytorch学习
PyCharm配置Anaconda环境指南:1)在PyCharm中通过Settings→Project→Python Interpreter添加Anaconda环境;2)选择已安装的conda环境或新建环境;3)激活特定conda环境使用命令"conda.bat activate 环境名";4)在Jupyter Notebook中运行PyTorch时需确保已激活对应环境。配置完成后即可在PyCharm中无缝使用Anaconda管理的Python环境和包。
2025-09-26 20:03:36
295
spring,spring-aop-5.3.22.jar+aop+IDEA本地包
2022-09-09
Typora 编辑工具+主题+快捷键
2022-08-24
2020最新版_JavaWeb项目实战-MyShop【千锋】源码+课件+软件+资料
2022-08-24
Python 3 游戏-Three Doors-Python
2022-08-24
在虚拟中安装win7映像的安装指导书,详解图版
2022-08-12
【喜马拉雅大学】精选演播练习素材
2022-08-15
主播必备-音效资料包2.0
2022-08-15
计算机+Linux+NaSarang+XShell7andXftp7+远程登陆+远程上传下载文件(软件+安装过程)
2022-08-12
010EditorWin64Installer12.0.1InstallationTutorial
2022-07-28
010EditorWin64Installer12.0.1.exe
2022-07-28
cursor-windows
2025-09-05
【docker-centos7】docker在centos7中如何安装??.md【docker-centos7】docker在c
2023-05-11
PDF整合-高效办公?如何批量合并?
2023-10-08
趣味C语言-题库-C语言-舍罕网的失算?
2023-09-28
【Error-Mysql】关于mysql服务和mysql57服务名称,注意mysql的服务名称`mysql`;而AppServ中
2023-07-07
期末救命版-软件设计与体系结构-清华大学出版社-主编-秦航期末救命版-软件设计与体系结构-清华大学出版社-主编-秦航
2023-07-07
软件设计与体系结构期末复习-选择软件设计与体系结构期末复习-选择
2023-06-23
spring boot-微服务项目整合框架含Swagger2
2023-06-16
JS-JavaScript项目-大学生期末大作业
2023-06-09
【Spark大数据习题】习题-Spark SQL&&&Kafka&& HBase&&HivePDF资源路径-Spark2
2023-06-01
【Spark大数据习题】习题-Spark SQL&&&Kafka&& HBase&&HiveSpark第二次小测
2023-06-01
Docker Desktop Installer.exe
2023-05-05
postm an+postm an是一款功能超级强大的用于发送 HTTP 请求的 Chrome插件
2023-03-18
springboot cloud项目部署, 接口访问问题
2023-06-23
% 与 mod 使用
2022-09-22
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅