随着 AI 模型在边缘设备上的应用越来越广泛,OpenVINO 成为了 Intel 平台部署深度学习模型的首选工具。为了帮助开发者更系统地掌握 OpenVINO 的使用,我撰写了这一系列教程,从基础原理、环境配置,到模型量化、性能优化与实战部署,力求覆盖完整使用链路。本文是该系列的导航总结,帮助大家快速找到所需内容。
教程列表
📘 OpenVINO 教程(一):架构原理解析、安装配置与初步体验
内容简介:介绍 OpenVINO 的整体架构、安装方式、基本组件的功能,以及初步的模型推理体验。
📘 OpenVINO 教程(二):图片目标检测推理应用
内容简介:基于现有的目标检测模型,演示如何使用 OpenVINO 进行图片推理。包括模型转换、推理流程、结果展示。
📘 OpenVINO 教程(三):使用 NNCF 进行模型量化加速
内容简介:介绍如何使用 Intel 的 NNCF 工具对模型进行量化处理,从而实现性能优化,加速推理速度。
📘 OpenVINO 教程(四):benchmark_app 实战详解及 FP32 与 INT8 模型性能对比
内容简介:使用 benchmark_app 工具对不同精度模型进行测试,分析性能差异并给出优化建议。
📘 OpenVINO 教程(五):实现 YOLOv11+OpenVINO 实时视频目标检测
内容简介:将 YOLOv11 与 OpenVINO 结合,部署实时视频目标检测应用,并基于 Tkinter 可视化检测结果。
适合人群 & 阅读建议
本系列适合希望深入了解 OpenVINO 的开发者、AI 工程师与边缘计算开发者。推荐按顺序阅读,也可根据需要直接跳转某一部分深入学习。
如果你也在研究 OpenVINO 或部署 AI 模型的道路上,希望这套教程能成为你的实战指南。欢迎点赞、收藏这篇导航文章,方便你随时回顾查阅!也欢迎留言交流经验,共同成长!