转载于:http://blog.csdn.net/llzk_/article/details/53354071
排序总归来说可分为两大类,比较排序与非比较排序。比较排序就是我们常用到的冒泡排序,插入排序,希尔排序,选择排序,堆排序,快速排序,归并排序。非比较排序不常用,但是在对一些特殊的情况进行处理时,它的速度反而更快。
1、计数排序
排序原理:利用哈希的方法,将每个数据出现的次数都统计下来。哈希表是顺序的,所以我们统计完后直接遍历哈希表,将数据再重写回原数据空间就可以完成排序。
注意事项:
①因为要建立哈希表,计数排序只适用于对数据范围比较集中的数据集合进行排序。范围分散情况太浪费空间。如我有100个数,其中前99个都小于100,最后一个数位是10000,我们总不能开辟10000个数据大小的哈希表来进行排序吧!这样空间就太浪费了。 此时,就得考虑其他的算法了。当然,这个例子也可能不恰当,这里只是想让你们直观的理解。
②除了上面那种情况,还有一个问题,例如我有一千个数,1001~2000,此时我的哈希表该怎么开辟呢? 开0~2000个?那前面1000个空间就浪费了!直接从1001开始开辟?你想多了!所以这种情况我们就需要遍历一遍数据,找出最大值与最小值,求出数据范围。范围 = 最大值 - 最小值+1。 例如,2000-1001+1 = 1000,这样我们就开辟0~1000个空间,用1代表1001,1000代表2000。节省了大量的空间。
③肯定有同学想到用位图(BitMap)来做,但是位图(BitMap)有局限性,它要求每个数据只能出现一次。算法有些复杂,但是可以尝试。
时间复杂度分析:综上所述,我们总需要两遍遍历,第一遍统计字数据出现次数,遍历原数据,复杂度为O(N),第二遍遍历哈希表,向原空间写数据,遍历了范围次(range),时间复杂度为O(range),所以总的时间复杂度为O(N+range)。
空间复杂度分析:开辟了范围(range)大小的辅助哈希表,所以空间复杂度为O(range)。
下面我对一组数据进行排序做出图解:
缺点:这个算法的简洁性同时也是它的弱点。很多程序员不需要对整数排序。其实通常非整数都可以被规约为整数,然后再用计数排序或者基数排序。
c++代码实现:
- void CountSort(int *a, int n)
- {
- assert(a);
- int max = a[0];
- int min = a[0];
- //选出最大数与最小数,确定哈希表的大小
- for (int i = 0; i < n; ++i)
- {
- if (a[i] > max)
- {
- max = a[i];
- }
- if (a[i] < min)
- {
- min = a[i];
- }
- }
- int range = max - min + 1;
- int *count = new int[range];
- memset(count, 0, sizeof(int)*range);//当初始化成0或-1的时候可以用memset,其他情况均用for循环
- /*for (int i = 0; i < range; ++i)
- {
- count[i] = 0;
- }*/
- for (int i = 0; i < n; ++i)
- {
- count[a[i] - min]++;
- }
- //将数据重新写回数组
- int j = 0;
- for (int i = 0; i < range; ++i)
- {
- while ((count[i]--) > 0)
- {
- a[j] = i + min;
- j++;
- }
- }
- }