bzoj1977 严格的次小生成树(LCA倍增)

1977: [BeiJing2010组队]次小生成树 Tree

Time Limit: 10 Sec   Memory Limit: 512 MB
Submit: 2304   Solved: 542
[ Submit][ Status][ Discuss]

Description

小 C 最近学了很多最小生成树的算法,Prim 算法、Kurskal 算法、消圈算法等等。 正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了。小 P 说,让小 C 求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说: 如果最小生成树选择的边集是 EM,严格次小生成树选择的边集是 ES,那么需要满足:(value(e) 表示边 e的权值)  这下小 C 蒙了,他找到了你,希望你帮他解决这个问题。

Input

第一行包含两个整数N 和M,表示无向图的点数与边数。 接下来 M行,每行 3个数x y z 表示,点 x 和点y之间有一条边,边的权值为z。

Output

包含一行,仅一个数,表示严格次小生成树的边权和。(数据保证必定存在严格次小生成树)

Sample Input

5 6
1 2 1
1 3 2
2 4 3
3 5 4
3 4 3
4 5 6

Sample Output

11

HINT

数据中无向图无自环; 50% 的数据N≤2 000 M≤3 000; 80% 的数据N≤50 000 M≤100 000; 100% 的数据N≤100 000 M≤300 000 ,边权值非负且不超过 10^9 。


所谓严格的次小是指权值严格大于最小生成树的次小生成树,我们知道一般次小生成树,只需要先用kruskal算法求得最小生成树,然后暴力枚举非树边,替换路径最大边即可。

这题也可以类似思考,只是有一个问题,如果最大边与当前枚举边相等时,我们不能替换,于是求其次用次小边来替换。这样我们需要求得路径上的最小边和次小边(小于最小边),于是我们可以利用LCA的倍增算法来维护。

预处理过程需要考虑i->f[i][j]与f[i][j]->f[f[i][j]][j]这两段的合并,考虑这两段的最大值相同与不同情况,相同则说明次大值是这两个的次大值的最大值,不同的话,假设(a,b),(c,d)表示两段的(最大,次大),若a>c,显然次大为max(b,c), c>a的情况类似,见代码中的函数ck1。

预处理完,维护沿单链向上跳,记单链的(最大,次大)为(a,b),当前得到最优值(lx,ln),分三种情况讨论,lx与a的大小关系,见代码中的函数ck3。

这题数据较弱,其实之前的写法有点小问题也AC了,后来仔细考虑修改后,继续AC,修改后的更趋于正解。

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define Maxn 300010
using namespace std;

struct edge{
    int to,w,next;
}p[Maxn];
int head[Maxn/3],tot;
void addedge(int a,int b,int c){
    p[tot].to=b;
    p[tot].w=c;
    p[tot].next=head[a];
    head[a]=tot++;
}
struct line{
    int u,v,w;
    bool operator<(const line &a)const{
        return w<a.w;
    }
}q[Maxn];

int vis[Maxn];
int fa[Maxn/3];
int findset(int x){
    return fa[x]==x?x:(fa[x]=findset(fa[x]));
}
int unionset(int a,int b){
    return fa[findset(a)]=findset(b);
}
int dep[Maxn/3];
int f[Maxn/3][20],g[Maxn/3][20],h[Maxn/3][20];
void dfs(int u,int fa){
    f[u][0]=fa;
    dep[u]=dep[fa]+1;
    for(int i=head[u];i!=-1;i=p[i].next){
        int v=p[i].to;
        if(v!=fa){
            g[v][0]=p[i].w;
            h[v][0]=-1;
            dfs(v,u);
        }
    }
}
void ck1(int &a,int &b,int c,int d,int e,int f){
    if(c==e){a=c;b=max(d,f);return;}
    if(c>e) {swap(c,e);swap(d,f);} //c<e
    a=e;b=max(c,f);
}
int ck2(int lx,int ln,int w){
    if(w==lx) return w-ln; //取次长
    return w-lx; //取最长
}
void ck3(int &lx,int &ln,int u,int t){
    if(g[u][t]==lx) ln=max(ln,h[u][t]);
    else if(g[u][t]<lx) ln=max(ln,g[u][t]);
    else{
        ln=(lx,h[u][t]);
        lx=g[u][t];
    }
}
void init(int n){
    dfs(1,0);
    for(int j=0;j<18;j++)
        for(int i=1;i<=n;i++){
            if(!f[i][j]) f[i][j+1]=0;
            else{
                f[i][j+1]=f[f[i][j]][j];
                ck1(g[i][j+1],h[i][j+1],g[i][j],h[i][j],g[f[i][j]][j],h[f[i][j]][j]);
            }
        }
}
int LCA(int u,int v,int w){
    int lx=-1,ln=-1;
    if(dep[u]<dep[v]) swap(u,v);
    int df=dep[u]-dep[v],t=0;
    while(df){
        if(df&1){
            ck3(lx,ln,u,t);
            u=f[u][t];
        }
        t++;
        df>>=1;
    }
    if(u==v) return ck2(lx,ln,w);
    for(int i=18;i>=0;i--){
        if(f[u][i]!=f[v][i]){
            ck3(lx,ln,u,i);
            ck3(lx,ln,v,i);
            u=f[u][i];
            v=f[v][i];
        }
    }
    ck3(lx,ln,u,0);
    ck3(lx,ln,v,0);
    return ck2(lx,ln,w);
}
int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i=0;i<m;i++)
        scanf("%d%d%d",&q[i].u,&q[i].v,&q[i].w);
    sort(q,q+m);
    for(int i=1;i<=n;i++) fa[i]=i;
    memset(head,-1,sizeof head);
    memset(vis,0,sizeof vis);
    tot=0;
    int cnt=0;
    long long ans=0;
    for(int i=0;i<m;i++){
        int u=q[i].u,v=q[i].v;
        if(findset(u)==findset(v)) continue;
        unionset(u,v);
        vis[i]=1;
        addedge(u,v,q[i].w);
        addedge(v,u,q[i].w);
        ans+=q[i].w;
        if(++cnt==n-1) break;
    }
    init(n);
    int z=0x3f3f3f3f;
    for(int i=0;i<m;i++)
        if(!vis[i]) z=min(z,LCA(q[i].u,q[i].v,q[i].w));
    printf("%lld\n",ans+z);
	return 0;
}


  • 4
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值