本代码中M表示原始进制,N表示目标进制,大数处理的C++实现,M和N均[2,36]
#include<iostream>
#include<cstdio>
#include<cstring>
#include<map>
using namespace std;
const int maxM = 36; // 最大进制数 '0'-'9' + 'a'-'z' 共 36 种
const int maxn = 10000;
int M = 2; // 原始进制
int N = 2; // 目标进制
string str; // 存储输入
// 所有数组 0 号元素均表示数组长度
int dr[maxn]; // 存储由字符串转过来的大数
int drans[maxn]; // 求余过程中的商
int drres[maxn]; // 余数
map<char, int> mci; // 字符与数字对应的map
map<int, char> mic; // 数字与字符对应的map
// 字符与数值对应map初始化
void initialization()
{
// 字符与数字对应的map构建
for(int i = 0; i < maxM; ++i)
{
if(i < 10)
{
// '0' - '9'
mci['0'+i] = i;
mic[i] = '0'+i;
}
else
{
// 'a' - 'z'
mci['a'+i-10] = i;
mic[i] = 'a'+i-10;
}
}
}
// 判断是否是大写字母
int isCapital(char ch)
{
if(ch >= 'A' && ch <= 'Z')
{
return 1;
}
else
{
return 0;
}
}
// 字符串预处理,并给存储原始进制的数组赋值
void pretreatment()
{
// 将所有大写字母转换成小写
for(int i = 0; i < str.length(); ++i)
{
// 大写字母转小写
if(isCapital(str[i]) == 1)
{
str[i] = 'a' + str[i] - 'A';
}
}
// 给存储原始进制的数组赋值
memset(dr, 0, sizeof(dr));
for(int i = 0; i < str.length(); ++i)
{
dr[++dr[0]] = mci[str[i]];
}
}
// 将 M 进制的 dr 转换成 N 进制
void solve()
{
memset(drres, 0, sizeof(drres));
int i, j, y;
// 模 n 取余法,(总体规律是先余为低位,后余为高位)
while(dr[0] >= 1)
{
// 只要被除数仍然 >= 1,则继续操作
y = 0;
i = 1;
drans[0] = dr[0]; // 商的长度与被除数相同(包含前导0)
while(i <= dr[0])
{
y = y * M + dr[i];
drans[i++] = y / N;
y %= N;
}
drres[++drres[0]] = y; // 本轮计算得到的余数
i = 1;
// 找到下一轮商的起始位置
while((i<=drans[0]) && (drans[i] == 0)) ++i;
// 清除这一轮使用的被除数
memset(dr, 0, sizeof(dr));
// 本轮得到的商为下一轮的被除数
for(j = i; j <= drans[0]; ++j)
{
dr[++dr[0]] = drans[j];
}
// 清除本轮的商
memset(drans, 0, sizeof(drans));
}
}
// 输出 N 进制的结果
void output()
{
for(int i = drres[0]; i >= 1; --i)
{
cout << mic[drres[i]];
}
}
int main()
{
initialization(); // 字符与数值对应的map的构建
while(cin >> M >> N)
{
cin >> str;
pretreatment(); // 预处理字符串,并给存储原始进制的数组赋值
solve(); // 将 M 进制的 dr 转换成 N 进制
output(); // 输出 N 进制的结果
cout << endl;
}
return 0;
}