E. Fish+状态压缩dp+codeforces

E. Fish
time limit per test
3 seconds
memory limit per test
128 megabytes
input
standard input
output
standard output

n fish, numbered from 1 to n, live in a lake. Every day right one pair of fish meet, and the probability of each other pair meeting is the same. If two fish with indexes i and j meet, the first will eat up the second with the probabilityaij, and the second will eat up the first with the probabilityaji = 1 - aij. The described process goes on until there are at least two fish in the lake. For each fish find out the probability that it will survive to be the last in the lake.

Input

The first line contains integer n (1 ≤ n ≤ 18) — the amount of fish in the lake. Then there follown lines with n real numbers each — matrixa. aij (0 ≤ aij ≤ 1) — the probability that fish with indexi eats up fish with index j. It's guaranteed that the main diagonal contains zeros only, and for other elements the following is true:aij = 1 - aji. All real numbers are given with not more than 6 characters after the decimal point.

Output

Output n space-separated real numbers accurate to not less than 6 decimal places. Number with indexi should be equal to the probability that fish with indexi will survive to be the last in the lake.

Sample test(s)
Input
2
0 0.5
0.5 0
Output
0.500000 0.500000 
Input
5
0 1 1 1 1
0 0 0.5 0.5 0.5
0 0.5 0 0.5 0.5
0 0.5 0.5 0 0.5
0 0.5 0.5 0.5 0
Output
1.000000 0.000000 0.000000 0.000000 0.000000 
解决方案:状态压缩dp。可用二进制来枚举鱼的存活,1表示活,0表示死。dp[1111..00],表示出现某些鱼活,某些鱼死的概率。则dp[j被吃后的状态]=dp[j被吃前的状态]*p*mat[i][j],p为两鱼相遇的概率;p=C(2,m)m为剩余的个数。最后可得出每条鱼的存活率。
code:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int s=1<<19;
double dp[s];
double mat[20][20];
int n;
int bit_count(int x){
    int sum=0;
    while(x){
        sum+=x&1;
        x=x>>1;
    }
    return sum;
}
int main()
{
    while(~scanf("%d",&n)){
       // cout<<bit_count(n)<<endl;
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                scanf("%lf",&mat[i][j]);
            }
        }
        dp[(1<<n)-1]=1;
        for(int i=(1<<n)-1;i>=1;i--){
            int cnt=bit_count(i);
            if(cnt==1) continue;
           // cout<<i<<cnt<<endl;
            double p=2*dp[i]/(cnt*(cnt-1));
         // cout<<p<<endl;
            for(int l=0;l<n;l++)if(i&(1<<l)){
                for(int k=0;k<n;k++)if(i&(1<<k)){
                    dp[i^(1<<k)]+=p*mat[l][k];
                }
            }
        }
        for(int i=0;i<n;i++){
            printf("%.6f%c",dp[1<<i],i==n-1?'\n':' ');
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值