nlp
YiqiangXu
把时间投入到最有价值的地方
展开
-
深入浅出PageRank算法
https://segmentfault.com/a/1190000000711128原创 2016-07-18 20:51:46 · 620 阅读 · 0 评论 -
基于LSTM搭建一个文本情感分类的深度学习模型:准确率往往有95%以上
基于情感词典的文本情感分类传统的基于情感词典的文本情感分类,是对人的记忆和判断思维的最简单的模拟,如上图。我们首先通过学习来记忆一些基本词汇,如否定词语有“不”,积极词语有“喜欢”、“爱”,消极词语有“讨厌”、“恨”等,从而在大脑中形成一个基本的语料库。然后,我们再对输入的句子进行最直接的拆分,看看我们所记忆的词汇表中是否存在相应的词语,然后根据这个词语的类别来判断情感,比如“我喜转载 2017-05-27 16:46:38 · 58447 阅读 · 25 评论 -
中文抽象语义表示
中文抽象语义表示原创 2017-05-25 22:24:15 · 1902 阅读 · 0 评论 -
An overview of gradient descent optimization algorithm
An overview of gradient descent optimization algorithmTable of contents:Gradient descent variantsBatch gradient descentStochastic gradient descentMini-batch gradient descen原创 2017-05-11 18:38:17 · 349 阅读 · 0 评论 -
seq2seq lecture
原创 2017-05-08 17:30:16 · 317 阅读 · 0 评论 -
条件随机场(CRF)
1. 如何轻松愉快地理解条件随机场(CRF)2. 条件随机场(Conditional random fields)3. 条件随机场(CRF)理论及应用4. CRF++词性标注5. CRF++中文分词6. 条件随机场(码农场)原创 2017-04-17 17:14:36 · 836 阅读 · 0 评论 -
长短期记忆网络(LSTM)
[WILDML]implementing a GRU/LSTM RNN with python and theanoUnderstanding LSTM Networks原创 2017-03-07 00:52:57 · 1104 阅读 · 0 评论 -
Sequence to Sequence 模型
使用 Keras 实现简单的 Sequence to Sequence 模型Learning Phrase Representation using RNN Encode-Decoder for Statistical Machine Translation阅读笔记Sequence to Sequence Learning with Neural Networks阅读笔记原创 2017-03-25 10:58:16 · 1930 阅读 · 0 评论 -
Encoder-Decoder模型和Attention模型
这两天在看attention模型,看了下知乎上的几个回答,很多人都推荐了一篇文章Neural Machine Translation by Jointly Learning to Align and Translate 我看了下,感觉非常的不错,里面还大概阐述了encoder-decoder(编码)模型的概念,以及传统的RNN实现。然后还阐述了自己的attention模型。我看了一下,自己做了一些转载 2017-04-10 11:23:39 · 529 阅读 · 0 评论 -
2017-03-11阅读计划
DEEP LEARNING FOR CHATBOTS, PART 1 – INTRODUCTION原创 2017-03-11 20:16:06 · 241 阅读 · 0 评论 -
自动文档摘要评价方法:Edmundson,ROUGE
自动文档摘要评价方法大致分为两类:(1)内部评价方法(Intrinsic Methods):提供参考摘要,以参考摘要为基准评价系统摘要的质量。系统摘要与参考摘要越吻合, 质量越高。(2)外部评价方法(Extrinsic Methods):不提供参考摘要,利用文档摘要代替原文档执行某个文档相关的应用。例如:文档检索、文档聚类、文档分类等, 能够提高应用性能的摘要被认为是质量好的摘要。转载 2016-10-31 19:37:42 · 5028 阅读 · 0 评论 -
HMM求解观察序列概率的"前向算法"伪代码实现
//求解观察序列概率的前向算法//A是N*N状态转移概率矩阵//B是N*M符号发射概率矩阵//pi是1*N是初始状态的概率分布//T是终态时间//O是1*T观察序列forword_HMM(A, B,pi, T, O) N = A.length graph[2][N]//记录表格,利用滚动数组节约存储空间 for t = 0 to (T - 1) for j = 0 to (N原创 2016-08-25 10:52:07 · 1582 阅读 · 0 评论 -
HMM求解观察序列概率的"前向算法"伪代码实现
//求解观察序列概率的前向算法//A是N*N状态转移概率矩阵//B是N*M符号发射概率矩阵//pi是1*N是初始状态的概率分布//T是终态时间//O是1*T观察序列forword_HMM(A, B,pj, T, O) N = A.length graph[2][N]//记录表格,利用滚动数组节约存储空间 for t = 0 to (T - 1) for j = 0 to (N原创 2016-08-25 10:47:54 · 552 阅读 · 0 评论 -
条件随机场
点击打开链接原创 2016-08-28 10:14:45 · 386 阅读 · 0 评论 -
word2vec前世今生
word2vec前世今生:点击打开链接原创 2016-07-21 16:37:56 · 1193 阅读 · 0 评论 -
基于微博用户标签的中医药情绪分析
1. 主要内容收集语料库和字典资源,根据用户标签自动标注数据,构建支持向量机(SVM)分类器,预测人们对中医药(Traditional Chinese Medicine ,TCM)的情绪,并提出调整分类器结果的方法,获得的F-measure的性能是97%。2. 数据收集和打标记(1) 对中医药感兴趣用户识别:微波用户可以自己设置兴趣标签,筛选出下表Table 1 的类似标签原创 2017-07-01 23:21:52 · 956 阅读 · 0 评论