大二上学习目标制定

一个迟到的学习计划,开学之前虽然也曾畅想过关于大二一些学习什么的.可是真正做的时候却有些目标漫无目.开学也将近一个半月了,每天的日子过的感觉满满的,但是那真实的收获确实木有多少.内心始终有一种不踏实,有一种虚浮的感觉.鉴于以上的种种的不适应,特此制定以下学习目标,并且要脚踏实地的实现它.

   以下目标的实现日期是本年十月至次年一月-即本学期结束之前。

一`线性代数一定要学好,每次的课堂作业必须自己写.概率论说真的有点无语貌似都木有听过课,这个得改变.

二`专业课,数据结构严蔚敏的那本书要弄懂,每个算法的实现要敲成源代码,并且要能运行,同时PDF版的<<大话数据结构>>也要看一看.

三`cpp这本书上的代码以及文字要认真的通读一遍,再精度一遍.并且其上的源代码要尽可能发表到csdn博客上面.

四`<<c陷阱与缺陷>>,<<c专家编程>>,<<c和指针>>这三剑客在大学上要尽快结束掉。

五`传智播客清华土匪帮帮主尹成老师的两季视频教程要看看,并且做好笔记。

六`对于英语有点……只能说借点小人书自己慢慢看,这个得慢慢积累.

闲暇之余要做的。

追的那十几本小说,自己买的那本c语言从入门到精通,高等数学上下五千年,平凡的世界。

分数阶傅里叶变换(Fractional Fourier Transform, FRFT)是对传统傅里叶变换的拓展,它通过非整数阶的变换方式,能够更有效地处理非线性信号以及涉及时频局部化的问题。在信号处理领域,FRFT尤其适用于分析非平稳信号,例如在雷达、声纳和通信系统中,对线性调频(Linear Frequency Modulation, LFM)信号的分析具有显著优势。LFM信号是一种频率随时间线性变化的信号,因其具有宽频带和良好的时频分辨率,被广泛应用于雷达和通信系统。FRFT能够更精准地捕捉LFM信号的时间和频率信息,相比普通傅里叶变换,其性能更为出色。 MATLAB是一种强大的数值计算和科学计算工具,拥有丰富的函数库和用户友好的界面。在MATLAB中实现FRFT,通常需要编写自定义函数或利用信号处理工具箱中的相关函数。例如,一个名为“frft”的文件可能是用于执行分数阶傅里叶变换的MATLAB脚本或函数,并展示其在信号处理中的应用。FRFT的正确性验证通常通过对比变换前后信号的特性来完成,比如评估信号的重构质量、信噪比等。具体而言,可以通过计算原始信号与经过FRFT处理后的信号之间的相似度,或者对比LFM信号的关键参数(如初始频率、扫频率和持续时间)是否在变换后得到准确恢复。 在MATLAB代码实现中,通常包含以下步骤:首先,生成LFM信号模型,设定其初始频率、扫频率、持续时间和采样率等参数;其次,利用自定义的frft函数对LFM信号进行分数阶傅里叶变换;接着,使用MATLAB的可视化工具(如plot或imagesc)展示原始信号的时域和频域表示,以及FRFT后的结果,以便直观对比;最后,通过计算均方误差、峰值信噪比等指标来评估FRFT的性能。深入理解FRFT的数学原理并结合MATLAB编程技巧,可以实现对LFM信号的有效分析和处理。这个代码示例不仅展示了理论知识在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值