Spark LDA 主题抽取

转https://blog.csdn.net/poised/article/details/50382107

本文主要对使用Spark MLlib LDA进行主题抽取时遇到的工程问题做一总结,列出其中的一些小坑,或可供读者借鉴。关于LDA的具体理论等可以自行google。主题预测请参考:Spark LDA 主题预测

开发环境:spark-1.5.2,hadoop-2.6.0,spark-1.5.2要求jdk7+。语料有大概70万篇博客,十亿+词汇量,词典大概有五万左右的词。

训练语料代码

apache/spark/examples/mllib/

// scalastyle:off println
package org.apache.spark.examples.mllib
import java.text.BreakIterator
import scala.collection.mutable
import scopt.OptionParser
import org.apache.log4j.{Level, Logger}
import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.mllib.clustering.{EMLDAOptimizer, OnlineLDAOptimizer, DistributedLDAModel, LDA}
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.rdd.RDD
/**
 * An example Latent Dirichlet Allocation (LDA) app. Run with
 * {{{
 * ./bin/run-example mllib.LDAExample [options] <input>
 * }}}
 * If you use it as a template to create your own app, please use `spark-submit` to submit your app.
 */
object LDAExample {
  private case class Params(
      input: Seq[String] = Seq.empty,
      k: Int = 20,
      maxIterations: Int = 10,
      docConcentration: Double = -1,
      topicConcentration: Double = -1,
      vocabSize: Int = 10000,
      stopwordFile: String = "",
      algorithm: String = "em",
      checkpointDir: Option[String] = None,
      checkpointInterval: Int = 10) extends AbstractParams[Params]
  def main(args: Array[String]) {
    val defaultParams = Params()
    val parser = new OptionParser[Params]("LDAExample") {
      head("LDAExample: an example LDA app for plain text data.")
      opt[Int]("k")
        .text(s"number of topics. default: ${defaultParams.k}")
        .action((x, c) => c.copy(k = x))
      opt[Int]("maxIterations")
        .text(s"number of iterations of learning. default: ${defaultParams.maxIterations}")
        .action((x, c) => c.copy(maxIterations = x))
      opt[Double]("docConcentration")
        .text(s"amount of topic smoothing to use (> 1.0) (-1=auto)." +
        s"  default: ${defaultParams.docConcentration}")
        .action((x, c) => c.copy(docConcentration = x))
      opt[Double]("topicConcentration")
        .text(s"amount of term (word) smoothing to use (> 1.0) (-1=auto)." +
        s"  default: ${defaultParams.topicConcentration}")
        .action((x, c) => c.copy(topicConcentration = x))
      opt[Int]("vocabSize")
        .text(s"number of distinct word types to use, chosen by frequency. (-1=all)" +
          s"  default: ${defaultParams.vocabSize}")
        .action((x, c) => c.copy(vocabSize = x))
      opt[String]("stopwordFile")
        .text(s"filepath for a list of stopwords. Note: This must fit on a single machine." +
        s"  default: ${defaultParams.stopwordFile}")
        .action((x, c) => c.copy(stopwordFile = x))
      opt[String]("algorithm")
        .text(s"inference algorithm to use. em and online are supported." +
        s" default: ${defaultParams.algorithm}")
        .action((x, c) => c.copy(algorithm = x))
      opt[String]("checkpointDir")
        .text(s"Directory for checkpointing intermediate results." +
        s"  Checkpointing helps with recovery and eliminates temporary shuffle files on disk." +
        s"  default: ${defaultParams.checkpointDir}")
        .action((x, c) => c.copy(checkpointDir = Some(x)))
      opt[Int]("checkpointInterval")
        .text(s"Iterations between each checkpoint.  Only used if checkpointDir is set." +
        s" default: ${defaultParams.checkpointInterval}")
        .action((x, c) => c.copy(checkpointInterval = x))
      arg[String]("<input>...")
        .text("input paths (directories) to plain text corpora." +
        "  Each text file line should hold 1 document.")
        .unbounded()
        .required()
        .action((x, c) => c.copy(input = c.input :+ x))
    }
    parser.parse(args, defaultParams).map { params =>
      run(params)
    }.getOrElse {
      parser.showUsageAsError
      sys.exit(1)
    }
  }
  private def run(params: Params) {
    val conf = new SparkConf().setAppName(s"LDAExample with $params")
    val sc = new SparkContext(conf)
    Logger.getRootLogger.setLevel(Level.WARN)
    // Load documents, and prepare them for LDA.
    val preprocessStart = System.nanoTime()
    val (corpus, vocabArray, actualNumTokens) =
      preprocess(sc, params.input, params.vocabSize, params.stopwordFile)
    corpus.cache()
    val actualCorpusSize = corpus.count()
    val actualVocabSize = vocabArray.size
    val preprocessElapsed = (System.nanoTime() - preprocessStart) / 1e9
    println()
    println(s"Corpus summary:")
    println(s"\t Training set size: $actualCorpusSize documents")
    println(s"\t Vocabulary size: $actualVocabSize terms")
    println(s"\t Training set size: $actualNumTokens tokens")
    println(s"\t Preprocessing time: $preprocessElapsed sec")
    println()
    // Run LDA.
    val lda = new LDA()
    val optimizer = params.algorithm.toLowerCase match {
      case "em" => new EMLDAOptimizer
      // add (1.0 / actualCorpusSize) to MiniBatchFraction be more robust on tiny datasets.
      case "online" => new OnlineLDAOptimizer().setMiniBatchFraction(0.05 + 1.0 / actualCorpusSize)
      case _ => throw new IllegalArgumentException(
        s"Only em, online are supported but got ${params.algorithm}.")
    }
    lda.setOptimizer(optimizer)
      .setK(params.k)
      .setMaxIterations(params.maxIterations)
      .setDocConcentration(params.docConcentration)
      .setTopicConcentration(params.topicConcentration)
      .setCheckpointInterval(params.checkpointInterval)
    if (params.checkpointDir.nonEmpty) {
      sc.setCheckpointDir(params.checkpointDir.get)
    }
    val startTime = System.nanoTime()
    val ldaModel = lda.run(corpus)
    val elapsed = (System.nanoTime() - startTime) / 1e9
    println(s"Finished training LDA model.  Summary:")
    println(s"\t Training time: $elapsed sec")
    if (ldaModel.isInstanceOf[DistributedLDAModel]) {
      val distLDAModel = ldaModel.asInstanceOf[DistributedLDAModel]
      val avgLogLikelihood = distLDAModel.logLikelihood / actualCorpusSize.toDouble
      println(s"\t Training data average log likelihood: $avgLogLikelihood")
      println()
    }
    // Print the topics, showing the top-weighted terms for each topic.
    val topicIndices = ldaModel.describeTopics(maxTermsPerTopic = 10)
    val topics = topicIndices.map { case (terms, termWeights) =>
      terms.zip(termWeights).map { case (term, weight) => (vocabArray(term.toInt), weight) }
    }
    println(s"${params.k} topics:")
    topics.zipWithIndex.foreach { case (topic, i) =>
      println(s"TOPIC $i")
      topic.foreach { case (term, weight) =>
        println(s"$term\t$weight")
      }
      println()
    }
    sc.stop()
  }
  /**
   * Load documents, tokenize them, create vocabulary, and prepare documents as term count vectors.
   * @return (corpus, vocabulary as array, total token count in corpus)
   */
  private def preprocess(
      sc: SparkContext,
      paths: Seq[String],
      vocabSize: Int,
      stopwordFile: String): (RDD[(Long, Vector)], Array[String], Long) = {
    // Get dataset of document texts
    // One document per line in each text file. If the input consists of many small files,
    // this can result in a large number of small partitions, which can degrade performance.
    // In this case, consider using coalesce() to create fewer, larger partitions.
    val textRDD: RDD[String] = sc.textFile(paths.mkString(","))
    // Split text into words
    val tokenizer = new SimpleTokenizer(sc, stopwordFile)
    val tokenized: RDD[(Long, IndexedSeq[String])] = textRDD.zipWithIndex().map { case (text, id) =>
      id -> tokenizer.getWords(text)
    }
    tokenized.cache()
    // Counts words: RDD[(word, wordCount)]
    val wordCounts: RDD[(String, Long)] = tokenized
      .flatMap { case (_, tokens) => tokens.map(_ -> 1L) }
      .reduceByKey(_ + _)
    wordCounts.cache()
    val fullVocabSize = wordCounts.count()
    // Select vocab
    //  (vocab: Map[word -> id], total tokens after selecting vocab)
    val (vocab: Map[String, Int], selectedTokenCount: Long) = {
      val tmpSortedWC: Array[(String, Long)] = if (vocabSize == -1 || fullVocabSize <= vocabSize) {
        // Use all terms
        wordCounts.collect().sortBy(-_._2)
      } else {
        // Sort terms to select vocab
        wordCounts.sortBy(_._2, ascending = false).take(vocabSize)
      }
      (tmpSortedWC.map(_._1).zipWithIndex.toMap, tmpSortedWC.map(_._2).sum)
    }
    val documents = tokenized.map { case (id, tokens) =>
      // Filter tokens by vocabulary, and create word count vector representation of document.
      val wc = new mutable.HashMap[Int, Int]()
      tokens.foreach { term =>
        if (vocab.contains(term)) {
          val termIndex = vocab(term)
          wc(termIndex) = wc.getOrElse(termIndex, 0) + 1
        }
      }
      val indices = wc.keys.toArray.sorted
      val values = indices.map(i => wc(i).toDouble)
      val sb = Vectors.sparse(vocab.size, indices, values)
      (id, sb)
    }
    val vocabArray = new Array[String](vocab.size)
    vocab.foreach { case (term, i) => vocabArray(i) = term }
    (documents, vocabArray, selectedTokenCount)
  }
}
/**
 * Simple Tokenizer.
 *
 * TODO: Formalize the interface, and make this a public class in mllib.feature
 */
private class SimpleTokenizer(sc: SparkContext, stopwordFile: String) extends Serializable {
  private val stopwords: Set[String] = if (stopwordFile.isEmpty) {
    Set.empty[String]
  } else {
    val stopwordText = sc.textFile(stopwordFile).collect()
    stopwordText.flatMap(_.stripMargin.split("\\s+")).toSet
  }
  // Matches sequences of Unicode letters
  private val allWordRegex = "^(\\p{L}*)$".r
  // Ignore words shorter than this length.
  private val minWordLength = 3
  def getWords(text: String): IndexedSeq[String] = {
    val words = new mutable.ArrayBuffer[String]()
    // Use Java BreakIterator to tokenize text into words.
    val wb = BreakIterator.getWordInstance
    wb.setText(text)
    // current,end index start,end of each word
    var current = wb.first()
    var end = wb.next()
    while (end != BreakIterator.DONE) {
      // Convert to lowercase
      val word: String = text.substring(current, end).toLowerCase
      // Remove short words and strings that aren't only letters
      word match {
        case allWordRegex(w) if w.length >= minWordLength && !stopwords.contains(w) =>
          words += w
        case _ =>
      }
      current = end
      try {
        end = wb.next()
      } catch {
        case e: Exception =>
          // Ignore remaining text in line.
          // This is a known bug in BreakIterator (for some Java versions),
          // which fails when it sees certain characters.
          end = BreakIterator.DONE
      }
    }
    words
  }
}
// scalastyle:on printl
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250

执行命令:

“` bash 
spark-submit 
–class “LDAExample” 
–master local[*] 
–driver-memory 32g 
target/pack/lib/project.jar 
“file:/tmp/documents” 
–stopwordFile “file:/tmp/stopwords” 
–k 50 
–algorithm online 
–maxIterations 50 
–vocabSize 50000

遇到的坑

sbt pack
代码使用sbt 编译,然后提交到spark执行,所以需要打包程序所有依赖
–driver-memory
由于在master处指定了local[*] ,所以此处需要根据训练样本大小设置该参数,否则会内存溢出,如果是yarn或者mesos,则改为设置executor-memory。
–stopwordFile
可以先训练出词典,然后剔除其中不要的词,放入stopwordFile即可,词典对于最终的topic影响很大,所以尽量剔除干扰词。
–k
topic数量,越大则对内存要求越大,执行时长也相应增大
–algorithm
当前支持em和online两种,前者训练出来的是DistributedLDAModel,包含丰富的样本信息,但目前不能直接预测新文档(可以调用toLocal转换为LocalLDAModel)。后者是LocalLDAModel,可以用来预测新文档。online是后来加入的算法,性能更好。gibbs sampling 可能后续推出
–maxIterations
越大则内存和时长越大
–vocabSize
词典最大包含词数
maxResultSize
在程序中设定,存储处理结果,样本数量比较大的话,默认内存是不够的。 
SparkConf().set(“spark.driver.maxResultSize”, “5g”)
–docConcentration and topicConcentration
前者为文档对主题的先验概率,后者为主体对词的先验概率,默认为-1,则系统自动赋值。见参考4 
docConcentration赋值 
* Optimizer-specific parameter settings: 
* - EM 
* - Value should be > 1.0 
* - default = (50 / k) + 1, where 50/k is common in LDA libraries and +1 follows 
* Asuncion et al. (2009), who recommend a +1 adjustment for EM. 
* - Online 
* - Value should be >= 0 
* - default = (1.0 / k), following the implementation from 
* [[ https://github.com/Blei-Lab/onlineldavb]]
topicConcentration赋值 
* Optimizer-specific parameter settings: 
* - EM 
* - Value should be > 1.0 
* - default = 0.1 + 1, where 0.1 gives a small amount of smoothing and +1 follows 
* Asuncion et al. (2009), who recommend a +1 adjustment for EM. 
* - Online 
* - Value should be >= 0 
* - default = (1.0 / k), following the implementation from 
* [[ https://github.com/Blei-Lab/onlineldavb]].
文档预处理
注意训练集每行是一个源文档。SimpleTokenizer 将每行切分为词组,在此处可以通过stopwordFile来过滤词组。在训练集预处理函数preprocess中,wordCounts包含训练集中所有的词及其词频,可理解为map,并且被倒序排序,然后取vocabSize个词作为词典。将词典输出,高频词在前,可以将其中的干扰词或者不重要的词放入stopwordFile,这样反复训练几次,词典的质量就会比较高。参考1和2中训练了维基百科中500万篇文档,最后取词也就一万左右,词典质量越高,topic质量也就越高。

模型使用

训练结束,可以在模型上调用save方法保存模型,已备后续使用.

通过训练模型,可以查看不同topic在词典上的分布,以及训练样本的主题分布.

LocalLDAModel包含了topicsMatrix, 是一个vocabSize x k 矩阵.实际上给出了k个主题在词典上的分布.此处矩阵只存储了单词的索引,所以后续使用的话,需要自己保存词典,并且确保索引与该矩阵一致.在预处理训练样本的时候,每篇文档都被处理成”词索引<->词频”向量.

describeTopics(maxTermsPerTopic: Int)可以指定每个topic返回的词数量(已经按照权重降序排列),返回所有主题.

具体如何使用,用户可以参考spark 中LocalLDAModel和DistributedLDAModel的api文档。

参考:

1.https://databricks.com/blog/2015/03/25/topic-modeling-with-lda-mllib-meets-graphx.html 
2.https://databricks.com/blog/2015/09/22/large-scale-topic-modeling-improvements-to-lda-on-spark.html 
3.https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/mllib/LDAExample.scala 
4.http://blog.csdn.net/sunbow0/article/details/47662603 
5.http://spark.apache.org/docs/latest/quick-start.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值