人工智能
To_be_brave1
这个作者很懒,什么都没留下…
展开
-
人工智能图
http://edu.csdn.net/resource/images/special/ai/aimind.png转载 2017-12-01 19:40:44 · 321 阅读 · 0 评论 -
深度学习之路
偶然在github上看到Awesome Deep Learning项目,故分享一下。其中涉及深度学习的免费在线书籍、课程、视频及讲义、论文、教程、网站、数据集、框架和其他资源,包罗万象,非常值得学习。其中研究人员部分篇幅所限本文未整理进来。另外上面的GIF录制于MIT自动驾驶课程(MIT 6.S094: Deep Learning for Self-Driving Cars)PS:gith...转载 2018-10-08 19:05:27 · 732 阅读 · 0 评论 -
xgboost
https://blog.csdn.net/qunnie_yi/article/details/80129857在 Kaggle 的很多比赛中,我们可以看到很多 winner 喜欢用 xgboost,而且获得非常好的表现,今天就来看看 xgboost 到底是什么以及如何应用。本文结构:什么是 xgboost? 为什么要用它? 怎么应用? 学习资源什么是 xgboost?XG...转载 2018-07-30 13:58:52 · 263 阅读 · 0 评论 -
知识挖掘
本节介绍了知识挖掘的相关技术,包含实体链接与消歧,知识规则挖掘,知识图谱表示学习。知识挖掘实体消歧与链接示例一: 基于生成模型的 entity-mention 模型示例二: 构建实体关联图顶点的初始化边的初始化 : 深度语义关系模型基于图的标签传播算法示例三:基于知识库基于向量相似度的实体关联图的构建基于PageRank得分知识图谱表示学习(TranSE)PRA 与 TranSE的结合Ref知识挖...转载 2018-07-05 12:01:21 · 727 阅读 · 0 评论 -
卡内基梅隆大学使用主题模型,提出了基于知识型的词义消歧方法
原文来源:arxiv作者:Devendra Singh Chaplot、Ruslan Salakhutdinov「雷克世界」编译:嗯~阿童木呀、KABUDA相信大家都知道,在自然语言处理中存在这样一个尚待解决的问题:词义消歧(Word Sense Disambiguation),尤其在无监督环境中具有很大的挑战性和有用性。其中,对于任何给定文本中的所有单词都需要在不使用任何标记数据的情况下对其进行...转载 2018-06-01 16:27:52 · 871 阅读 · 0 评论 -
LDA 以及 Gensim 实现
http://www.shuang0420.com/2016/05/18/Gensim-and-LDA-Training-and-Prediction/import warningswarnings.filterwarnings(action='ignore', category=UserWarning, module='gensim')import sys,ossys.path.appe...原创 2018-06-05 18:23:34 · 3459 阅读 · 1 评论 -
基于主题策略的实体识别准确率优化
传统的命名实体识别中,主要是基于规则和词典的方法,在实体识别过程中没有给出具体的语义信息,因此会存在一词多义和多词一义的问题,对实体的消歧就是提升实体识别准确率的关键部分。主题模型是对文档隐含的主题进行建模的方法,是语义挖掘的利器,既可以衡量文档之间的语义相似性,还可以解决多义词的问题。在主题模型中,主题是一个概念,表现为一系列相关的词,通过命名实体在不同主题下的条件概率分布来达到实体...原创 2018-06-04 10:46:05 · 1520 阅读 · 1 评论 -
准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure
https://www.cnblogs.com/sddai/p/5696870.html准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measureyu Code 15 Comments 机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accuracy...转载 2018-06-04 10:43:50 · 123475 阅读 · 3 评论 -
Slam总结
https://blog.csdn.net/Darlingqiang/article/details/80689922总结一下我接触过的SLAM算法吧,主要集中在visual slam:特征法:ORB SLAM https://github.com/raulmur/ORB_SLAM2优势: 在静态环境下定位准确,稳定, 单目和双目版本都可以达到实时(高于10frames/s)。代码可...转载 2018-11-02 20:29:52 · 1101 阅读 · 1 评论