题意:加入最少数量的括号使得这个括号序列合法。
思路:DP
dp[ i ][ j ]表示 区间[ i , j ] 变成合法需要加的最少括号数。
而,要求dp[ i ][ j ]有三种情况
(1) i==j : dp[ i ][ j ]=1 就是加上对应的括号
(2) ch[ i ] 和 ch[ j ] 不能配对 : min(dp[i][k]+dp[k+1][j]) for k=i,i+1,...,j-1
(3) ch[ i ] 和 ch[ j ] 能配对:
如果i+1==j dp[i][j]=0;
否则 dp[i][j] = 将 dp[i+1][j-1] 与 (2) 中的情况相对比,求最小。
这就求出了数量。要显示出来,就DP的时候,同步记录操作。
op[ i ][ j ] = 0 :表示加上与这个括号对应的括号
op[ i ][ j ] =-1:表示ch[ i ] 与 ch[ j ] 是一对括号
op[ i ][ j ] =k>0: 表示分成两组:[ i , k ] 和 [ k+1 , j ]
然后最后递归输出就行了。
DP部分代码:
for(int i=n;i>0;--i){
for(int j=i;j<=n;++j){
if(i==j){
dp[i][j]=1;
op[i][j]=0;//0 means add the one that matches
continue;
}
int K=i,ANS=dp[i][K]+dp[K+1][j];
for(int k=K+1;k <j;++k){
if(dp[i][k]+dp[k+1][j]<ANS){
ANS=dp[i][k]+dp[k+1][j];
K=k;
}
}
dp[i][j]=ANS;op[i][j]=K;//positive value means to split at op[i][j]
if(ch[i]=='['&&ch[j]==']'||ch[i]=='('&&ch[j]==')'){
if(i+1==j){
dp[i][j]=0;
op[i][j]=-1;
}
else if(dp[i+1][j-1]<dp[i][j]) {
dp[i][j]=dp[i+1][j-1];
op[i][j]=-1;//-1 means ch[i] and ch[j] matches
}
}
}
}
显示部分代码:
void Show(int i,int j){
if(~op[i][j]){
if(op[i][j]){//positive value : split at op[i][j]
Show(i,op[i][j]);
Show(op[i][j]+1,j);
}
else{//op[i][j]=0 :add the one that matches
if(ch[i]=='('||ch[i]==')') printf("()");
else printf("[]");
}
}
else{//op[i][j] = -1 :ch[i] and ch[j] matches
printf("%c",ch[i]);
if(i+1!=j) Show(i+1,j-1);
printf("%c",ch[j]);
}
}