bzoj 1696 贪心

/*

其实sum和min都可以拆开的

即

求min( sum{|x-xi|} + sum{|y-yi|} )

那么思路很清晰了,,,

对于奇数。只有一个中位数,那么我们找1~n所有x的中位数和y的中位数,,这个就是它的点。。但是要注意,这个点不能和牛重合。如果重合,那么就取牛的上下左右四个点,即“没有两头牛的吃草位置是相邻的”,可以证明这是最优。。

对于偶数。有2个中位数,,那么我们就要找这两个中位数中所有的可行点。(其实这个范围内所有的点都是可行点,即答案有(xx-x+1)*(yy-y+1)个。。但是注意,这里面不能有牛,所以每找到一个牛,就要减去一个答案。
*/
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; }

const int N=10005;
struct dat { int x, y; }a[N];
bool cmpx(const dat &a, const dat &b) { return a.x<b.x; }
bool cmpy(const dat &a, const dat &b) { return a.y<b.y; }
int n, ans1, ans2;
bool check(int x, int y) {
    for1(i, 1, n) if(a[i].x==x && a[i].y==y) return 0;
    return 1;
}
int main() {
    read(n);
    for1(i, 1, n) read(a[i].x), read(a[i].y);
    if(n&1) {
        int x, y;
        sort(a+1, a+1+n, cmpx); x=a[(n>>1)+1].x;
        sort(a+1, a+1+n, cmpy); y=a[(n>>1)+1].y;
        if(check(x, y)) {
            for1(i, 1, n) ans1+=abs(x-a[i].x)+abs(y-a[i].y);
            ans2=1;
        }
        else {
            static int tp[4];
            CC(tp, 0);
            int fx[]={x+1, x-1, x, x}, fy[]={y, y, y-1, y+1}; ans1=~0u>>1;
            for1(i, 1, n) rep(j, 4) tp[j]+=abs(fx[j]-a[i].x)+abs(fy[j]-a[i].y);
            rep(j, 4) if(ans1>tp[j]) ans1=tp[j], ans2=1; else if(ans1==tp[j]) ++ans2;
        }
    }
    else {
        int x, y, xx, yy;
        sort(a+1, a+1+n, cmpx); x=a[(n>>1)].x; xx=a[(n>>1)+1].x;
        sort(a+1, a+1+n, cmpy); y=a[(n>>1)].y; yy=a[(n>>1)+1].y;
        ans2=(xx-x+1)*(yy-y+1);
        for1(i, 1, n) {
            if(a[i].x>=x && a[i].x<=xx && a[i].y>=y && a[i].y<=yy) --ans2;
            ans1+=abs(x-a[i].x)+abs(y-a[i].y);
        }
    }
    printf("%d %d", ans1, ans2);
    return 0;
}
### 回答1: bzoj作为一个计算机竞赛的在线评测系统,不仅可以提供大量的题目供程序员练习和学习,还可以帮助程序员提升算法和编程能力。为了更好地利用bzoj进行题目的学习和刷题,制定一个bzoj做题计划是非常有必要的。 首先,我们需要合理安排时间,每天留出一定的时间来做bzoj的题目。可以根据自己的时间安排,每天挑选适量的题目进行解答。可以先从难度较低的题目开始,逐渐提高难度,这样既能巩固基础知识,又能挑战自己的思维能力。 其次,要有一个计划和目标。可以规划一个每周或每月的题目数量目标,以及每个阶段要学习和掌握的算法知识点。可以根据bzoj的题目分类,如动态规划、图论、贪心算法等,结合自己的实际情况,有针对性地选择题目进行学习。 此外,要充分利用bzoj提供的资源。bzoj网站上有很多高质量的题解和优秀的解题代码,可以参考和学习。还有相关的讨论区,可以与其他程序员交流和讨论,共同进步。 最后,要坚持并保持思考。做题不是单纯为了刷数量,更重要的是学会思考和总结。遇到难题时,要有耐心,多思考,多尝试不同的解法。即使不能一次性解出来,也要学会思考和分析解题过程,以及可能出现的错误和优化。 总之,bzoj做题计划的关键在于合理安排时间、制定目标、利用资源、坚持思考。通过有计划的刷题,可以提高算法和编程能力,并培养解决问题的思维习惯,在计算机竞赛中取得更好的成绩。 ### 回答2: bzoj做题计划是指在bzoj这个在线测评系统上制定一套学习和刷题的计划,并且将计划记录在excel表格中。该计划主要包括以下几个方面的内容。 首先是学习目标的设定。通过分析自己的水平和知识缺口,可以设定一个合理的目标,比如每天解决一定数量的题目或者提高特定的算法掌握程度。 其次是题目选择的策略。在excel表格中可以记录下自己选择的题目编号、题目类型和难度等信息。可以根据题目的类型和难度来安排每天的刷题计划,确保自己可以逐步提高技巧和解题能力。 然后是学习进度的记录和管理。将每天的完成情况记录在excel表格中,可以清晰地看到自己的学习进度和任务完成情况。可以使用图表等功能来对学习进度进行可视化展示,更好地管理自己的学习计划。 同时,可以在excel表格的备注栏中记录下每道题目的解题思路、关键点和需要复习的知识点等信息。这样可以方便自己回顾和总结,巩固所学的知识。 最后,可以将excel表格与其他相关资料进行整合,比如算法教材、题目解析和学习笔记等。这样可以形成一个完整的学习档案,方便自己进行系统的学习和复习。 总之,bzoj做题计划excel的制定和记录可以帮助我们更加有条理和高效地进行学习和刷题。通过合理安排学习目标和题目选择策略,记录学习进度和思路,并整合其他学习资料,我们可以提高自己的解题能力,并在bzoj上取得更好的成绩。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值