自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

MR CODER

111

原创 linux common question record

Linux给用户添加sudo权限 Ubuntu改坏sudoers后无法使用sudo的解决办法

2020-04-05 21:16:55 38 0

原创 cs231n作业:Assignment2-Pytorch

import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torch.utils.data import sampler import t...

2020-03-14 22:27:56 119 0

原创 cs231n作业:Assignment2-Convolutional Networks

def conv_forward_naive(x, w, b, conv_param): """ A naive implementation of the forward pass for a convolutional layer. Th...

2020-03-03 17:37:15 70 0

原创 cs231n作业:Assignment2-Fully-Connected Neural Nets

fc_net.py from builtins import range from builtins import object import numpy as np from cs231n.layers import * from cs231n.layer_utils import * cl...

2020-02-27 16:59:16 94 0

原创 cs231n作业:Assignment2-Dropout

def dropout_forward(x, dropout_param): """ Performs the forward pass for (inverted) dropout. Inputs: - x: Input data,...

2020-02-26 21:09:24 42 0

原创 cs231n作业:Assignment2-Batch Normalization

from builtins import range import numpy as np def affine_forward(x, w, b): """ Computes the forward pass for an affine (full...

2020-02-24 19:49:46 61 0

原创 改善深层神经网络:超参数调试,正则化以及优化

11

2020-01-31 18:26:41 39 0

原创 cs231n作业:Assignment1-Image features exercise

# Use the validation set to tune the learning rate and regularization strength from cs231n.classifiers.linear_classifier import LinearSVM learning_...

2020-01-20 09:56:22 47 0

原创 cs231n作业:Assignment1- two_layer_net

from __future__ import print_function from builtins import range from builtins import object import numpy as np import matplotlib.pyplot as plt...

2019-12-16 15:52:10 51 0

原创 VGG:VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION ImageNet2014 定位第一,分类第二 "VGG"代表,牛津大学的Oxford Visual Geometry Group VG...

2019-12-13 19:51:09 66 0

原创 AlexNet:ImageNet Classification with Deep Convolutional Neural Networks

这个神经网络有6000万参数,和650000个神经元,包含5个卷积层(某些卷积层后面带有池化层)和3个全连接层,最后一个是1000维的softmax。 为了防止过拟合,使用了dropout的正则化方法。 使用了120万高分辨率图像分到1000个不同的类别中。 使用了非饱和的神经元并对卷积操作...

2019-12-01 10:14:16 65 0

原创 cs231n作业:Assignment1-softmax

def softmax_loss_naive(W, X, y, reg): """ Softmax loss function, naive implementation (with loops) Inputs have dimens...

2019-11-28 14:54:21 32 0

原创 python中的浅拷贝和深拷贝

浅拷贝: (1)切片操作 [:] (2)工厂函数,list(),dict() (3)使用copy模块中的copy函数 构造方法或切片[:]做的是浅拷贝,即拷贝了最外层的容器(内存地址不一样),副本中的元素都是原容器中的引用(内存地址一样)。 深拷贝: 不仅拷贝最外层的容器,还会拷贝容器中的元素。 ...

2019-11-26 10:43:28 14 0

原创 softmax/sigmoid tanh/ReLU/Leaky ReLU

softmax σ(xi)=exi∑j=1j=nexj\sigma(x_i) = {\frac{e^{xi}}{\sum_{j=1}^{j=n}e^{xj}}}σ(xi​)=∑j=1j=n​exjexi​ 概率之和为1,元素之间相互关联抑制,取值被压缩到(0,1)可用于多分类问题。 只有一个...

2019-11-24 22:12:28 51 0

原创 leetcoder 48. Rotate Image(思维)

题意:将一个矩阵进行顺时针旋转 自己的做法:直接推公式,x,y = y, n-1-x,弊端需要开一个标记数组 class Solution: def rotate(self, matrix): """ Do not return...

2019-11-24 20:59:54 19 0

原创 目标检测骨干网发展

111

2019-11-24 11:52:44 186 0

原创 LeNet-5 手写字体识别模型

手写字体识别模型LeNet5诞生于1994,是最早的神经网络之一。 现在常用的LeNet-5(卷积池化当作一层的话,共5层)结构和Yann LeCun教授在1988年提出的结构在某些地方有区别,比如激活函数的使用,现在一般采用ReLU作为激活函数,输出层一般选择softmax。(论文RBF) ...

2019-11-23 17:05:56 108 0

原创 cs231n作业:Assignment1-SVM

def svm_loss_naive(W, X, y, reg): """ Structured SVM loss function, naive implementation (with loops). Inputs have di...

2019-11-21 22:38:36 40 0

原创 线性分类(svm/softmax)/损失函数/优化

f(x,W)=Wx + b W:所有训练中的经验都存在W中 bias:他不与训练数据交互,而只会给我们一些数据独立的偏好值。 (例如,数据集的不平衡带来的差异 ) 优点:易于使用和理解 缺点:难于解决多分类问题,在多模态数据中,比如一个类别出现在不同的领域空间中 ...

2019-11-19 22:32:42 34 0

原创 归一化/标准化/正则化

为什么要进行归一化和标准化? 因为特征间的单位尺度可能不同,可能会导致计算结果也不同,尺度大的会起决定性作用,为了消除特征间的单位和尺度差异和影响,以对每维特征同等看待,需要对特征进行归一化操作。 因尺度差异,其损失函数的等高线可能是椭圆形,梯度方向垂直于等高线,下降会走zigzag路线,而不...

2019-11-18 23:59:00 41 0

原创 梯度下降法(全局gGD和随机gSGD)

梯度下降法分为全局梯度下降和随机梯度下降 全局梯度法训练的时候用的是所有的训练样本 gGD=1n∑i=1nΔθL(xi,yi,θt)g_{GD} = {{1} \over {n}}\sum_{i=1}^{n}\Delta_{\theta}L(x^{i},y^{i},\theta_{t})gGD​=...

2019-11-17 12:47:53 31 0

原创 YOLOv3: An Incremental Improvement

摘要 (1)比V2体积更大,精度更高,但是速度仍有保障 (2)输入320/*320的图片后,v3能在22ms内处理完成,并取得28.2mAP,精度和SSD相当,但速度快上3倍。 介绍 更新 2.1边框预测 V3用逻辑回归预测每个边界框的objective score。如果当前预测的边界...

2019-11-06 16:12:07 18 0

原创 softmax和交叉熵

softmax用于多分类过程中,往往加在神经网络的他将多个神经元的输出,映射到(0,1)区间内,看成概率来解,这些值的累和为1,在选取输出节点的时候选取概率最大的节点作为我们的预测目标,从而进行多分类。 Si=ei(∑jej)S_{i} = { \frac{e_{i}} {\choose\sum...

2019-11-04 15:48:46 27 0

原创 人脸识别基本常识

人脸识别算法主要包含三个模块 (1)人脸检测(Face Detection):确定人脸在图像中的大小和位置,也就是在图像中yu 代码中的main函数就相当于是test文件,用于输入数据,输出结果 代码返回的是图像中人脸的特征向量(多少个人脸就返回多少个向量) 实现识别功能的话,先把数据库中...

2019-11-03 11:10:29 148 0

原创 环境配置

找cuda:ls /usr/bin/cuda 查看GPU型号:nvidia-sml 下载与cpu对应的pytorch,例如: pip install https://download.pytorch.org/whl/cu90/torch-1.1.0-cp37-cp37m-linux_x86_...

2019-10-31 20:03:00 31 0

原创 cs231n作业:Assignment1-KNN

note: 曼哈顿距离依赖于坐标系统的选择(向量中的元素可能都有实际的意义) d1(I1,I2)=∑p∣I1p−I2p∣d_{1}(I_{1}, I_{2}) = \sum_{p}|I_{1}^{p}-I_{2}^{p}|d1​(I1​,I2​)=∑p​∣I1p​−I2p​∣ 欧式距离对距离...

2019-10-29 10:55:34 42 0

原创 YOLO9000: Better, Faster, Stronger

1.介绍 (1)大多数检测方法受限于小目标 (2)YOLOv2可以检测9000多种不同的物体 更好 (1)由于YOLO的缺点,我们的目标是提高召回和定位,同时保持分类的准确性。 (2)我们不是扩展我们的网络,而是简化我们的网络,然后使表示更容易学习。 ...

2019-10-27 10:02:12 61 0

原创 xunfei 算法提前批

作者:justonetime 链接:https://www.nowcoder.com/discuss/289720 来源:牛客网 一面挂,第二天就给我发感谢信了 1.哪里人; 2.工作地点; 3.讲一下SSIM公式; 4.看过多少论文; 5.知不知道分割,检测,识别,这块的论文说一下; 6.知道哪...

2019-10-21 11:11:04 15 0

原创 降(上)采样

降采样(subsampled) 目标:使得图像符合显示区域的大小,生成对应图像的缩率图。 本质就是池化操作(pooling),降低特征的维度保留有效的信息。保持平移,旋转,伸缩不变性。 图像的质量可能受到影响,但是也有一些缩放方法能够增加图像的质量。 上采样(upsampled) 目标:放大原图像...

2019-10-18 15:52:57 143 0

原创 学长的收割历程

秋招6月份开始,大部分8,9,10月份 蚂蚁金服, kaggle的比赛,传统的机器学习比赛 文章:就算没有顶会,能发出文章就能往简历上写(idea足够好) ACM:代码能力很重要,你不能指望别人去实现你的idea kaggle:实验室很难接触工业级的数据,更能接触工业界的场景,实验室的方...

2019-10-18 10:48:34 37 0

原创 目标检测20年

00

2019-10-18 10:47:57 76 0

原创 目标检测历史进展

早期目标检测流程 (1)候选框生成 (2)特征向量提取 (3)区域分类 DeepLearning 时代目标检测 (1)二阶检测器(如CNN,(R-CNN)及其变体) 首先使用候选框生成器生成稀疏的候选框集,然后使用深度卷积网络编码生成候选框的特征向量,最后使用区域分类器预测候选框区...

2019-10-18 10:47:36 107 0

原创 吴恩达 深度学习 学习笔记

第二周 深度卷积网络:实例探究 2.11计算机视觉 当数据量不大时,就需要在人工设计上多下一点功夫 通过他人的预训练模型进行微调可能训练效果会很好(大量的数据和GPU资源) 集成,可以独立训练几个神经网络并平均它们的输出(基准有所提高)eg:multi-crop 第三周 ...

2019-10-18 10:46:59 85 0

原创 讯飞 信息

2019-10-18 10:46:09 16 0

原创 You Only Look Once: Unified, Real-Time Object Detection

摘要 (1)将目标检测的设计看做是一个回归问题,从空间上分割边界框和类别的概率。 (2)在一次评估中,仅用一个神经网络就能预测整张图像的边界框和类别概率。 (3)特点: 1.检测速度非常快。 2.与其他实时检测系统相比能实现较高的mAP。 3.与其他先进的检测模型相比,定位误差更高,但...

2019-10-13 23:52:59 66 0

原创 之江实验室(杭州)

之江实验室2020校园招聘宣讲会-复旦站 宣讲时间:10月9日(周三)15:00 - 17:00 宣讲地点:邯郸校区 叶耀珍楼202 宣讲会报名链接:https://jinshuju.net/f/HFcwmB 【谁是之江实验室?】 之江实验室是浙江省政府、浙江大学、阿里巴巴共同举办的混合所有制新型...

2019-10-12 10:33:47 4218 1

原创 准确率和召回率 precision / Recall / mAP(mean average precision) / fps

因为看了很多次都没记住所以自己记录一下 西瓜和苹果 TP:西瓜检测成西瓜 FP:苹果检测成西瓜 FN:西瓜检测成苹果 TN:苹果检测成苹果 准确率 = (把西瓜检测成西瓜)/(把西瓜检测成西瓜+把苹果也检测成西瓜) 即:检测到的西瓜中确实是西瓜的个数 (precision)= TP / (TP...

2019-10-08 15:07:34 44 0

原创 心得总结

1.刷题还是很必须的。要做到快速出题,实在不会的题也得写个次优解,千万不要挂机。 2. 多掌握面试的主导权。引导面试官听你擅长的东西。 3. 面试气氛也很重要。 至少你要保持笑容,尽量不要愁眉苦脸,让面试官觉得以后和你合作会很愉快。 4. 知识的积累。这个平时就要做到,就不多说了。 5. ...

2019-10-08 10:10:21 23 0

原创 django 创建表单基础

GET /HelloWorld/HelloWorld/search.py 文件代码: # -*- coding: utf-8 -*- from django.http import HttpResponse from django.shortcuts import render_to_resp...

2019-09-23 21:04:48 33 0

原创 http基础

HTTP协议(HyperText Transfer Protocol,超文本传输协议) HTTP 是基于TCP/IP通信协议从万维网上传输数据(HTML,图片,查询结果)到本地浏览器。 常见http请求方法 GET:请求指定的页面信息,并返回实体主体 POST:向指定资源提交数据进行处理请求(例如...

2019-09-23 18:33:55 23 0

提示
确定要删除当前文章?
取消 删除