1.
</pre><pre name="code" class="java">package Sort;
/**
* 冒泡排序思想
* 自上而下,相邻的两个比较,小的向前,大的向后
* @author 2000105959
*
*/
public class SortMP {
public static void main(String[] args) {
int[] a={2,4,1,2,5,6,3,7,8,4,6};
int temp;
for(int i=0; i<a.length-1; i++){
for(int j=0;j<a.length-1-i; j++){
if(a[j]>a[j+1]){
temp=a[j];
a[j]=a[j+1];
a[j+1]=temp;
}
}
}
for(int i=0;i<a.length-1;i++)
System.out.println(a[i]);
}
}
2.
package Sort;
/**
* 快速排序思想
* 选基准元素 扫描比较 分成两部分 然后递归分开的两部分
* @author 2000105959
*
*/
public class SortKS {
static int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
public static void main(String[] args) {
QuickSort_DG(a,0,a.length-1);
for(int i=0;i<a.length-1;i++)
System.out.println(a[i]);
}
public static void QuickSort_DG(int[] list,int low,int high){
if(low<high){
int middle=getMiddle(list,low,high);
QuickSort_DG(list,low,middle-1);
QuickSort_DG(list,middle+1,high);
}
}
public static int getMiddle(int[] list,int low,int high){
int temp=list[low];
while(low<high){
while(low<high && temp<=list[high]){
high--;
}
list[low]=list[high];
while(low<high && temp>=list[low]){
low++;
}
list[high]=list[low];
list[low]=temp;
}
return low;
}
}
3.
package Sort;
/**
* 直接插入排序思想
* 从后往前,对前有序列进行比较,找到额合适的位置插入
* @author 2000105959
*
*/
public class SortZJCR {
public static void main(String[] args) {
int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1};
int key;
for(int i=1;i<a.length;i++){
int j;
key=a[i];
for(j=i-1;j>=0;j--){
if(key<a[j]){
a[j+1]=a[j];
}else{
break;
}
}
a[j+1]=key;
}
for(int i=0;i<a.length;i++)
System.out.println(a[i]);
}
}
4
package Sort;
/**
* 二分法排序思想
* 排序的思想和直接插入一样,已知有序列,只是找合适的插入位置的方式不同,这里是按二分法找到合适的
* @author 2000105959
*
*/
public class SortEFF {
public static void main(String[] args) {
int[] a={49,38,65,97,176,213,227,49,78,34,12,164,11,18,1};
System.out.println("排序之前:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
//二分插入排序
sort(a);
//binaryInsertionSort(a);
System.out.println("排序之后:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
}
private static void sort(int[] a) {
for (int i = 1; i < a.length; i++) {
int temp=a[i];
int low=0;
int high=i-1;
while(low<=high){
int mid=(low+high)/2;
if(temp<a[mid]){
high=mid-1;
}else{
low=mid+1;
}
}
for(int j=i-1;j>=low;j--){
a[j+1]=a[j];}
if(a[low]!=i){
a[low]=temp;}
}
}
public static void binaryInsertionSort(int[] array) {
for (int i = 1; i < array.length; i++) {
int temp = array[i];
int right = i - 1;
int left = 0;
int mid;
// 定位
while (left <=right) {
mid = (left + right) / 2;
if (array[mid] > temp) {
right = mid - 1;
}else{
left = mid + 1;
}
}
// 移动数组
for (int j = i; j > left; j--) {
array[j] = array[j - 1];
}
// 在找到的位置插入
array[left] = temp;
}
}
}
5
package Sort;
/**
* 希尔排序思想
* 先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,
* 待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序
* @author 2000105959
*
*/
public class SortXE {
/**希尔排序的原理:根据需求,如果你想要结果从大到小排列,它会首先将数组进行分组,然后将较大值移到前面,较小值
* 移到后面,最后将整个数组进行插入排序,这样比起一开始就用插入排序减少了数据交换和移动的次数,可以说希尔排序是加强
* 版的插入排序
* 拿数组5, 2, 8, 9, 1, 3,4来说,数组长度为7,当increment为3时,数组分为两个序列
* 5,2,8和9,1,3,4,第一次排序,9和5比较,1和2比较,3和8比较,4和比其下标值小increment的数组值相比较
* 此例子是按照从大到小排列,所以大的会排在前面,第一次排序后数组为9, 2, 8, 5, 1, 3,4
* 第一次后increment的值变为3/2=1,此时对数组进行插入排序,
*实现数组从大到小排
*/
public static void shellSort(int[] data)
{
int j = 0;
int temp = 0;
//每次将步长缩短为原来的一半
for (int increment = data.length / 2; increment > 0; increment /= 2)
{
for (int i = increment; i < data.length; i++)
{
temp = data[i];
for (j = i; j >= increment; j -= increment)
{
if(temp > data[j - increment])//如想从小到大排只需修改这里
{
data[j] = data[j - increment];
}
else
{
break;
}
}
data[j] = temp;
}
}
}
}
6
package Sort;
/**
* 简单选择排序思想
* 每趟选择最小的元素组成有序列
* @author 2000105959
*
*/
public class SortJDXZ {
public static void main(String[] args) {
int[] a={3,24,5,1};
for(int i=0;i<a.length;i++){
int temp;
int index=i;
for(int j=i+1;j<a.length;j++){
if(a[j]<a[index]){
index=j;
}
}
temp=a[index];
a[index]=a[i];
a[i]=temp;
}
for(int k=0;k<a.length;k++)
System.out.println(a[k]);
}
}
7
package Sort;
import java.util.Arrays;
/**
* 堆排序思想
* 初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个 堆,
* 这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。
* 依此类推,直到只有两个节点的堆,并对 它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序
* 需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。
* 一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
* @author 2000105959
*
*/
public class SortDPX {
public static void main(String[] args) {
int[] a={49,38,65,97,76,13,27,49,78,34,12,64};
int arrayLength=a.length;
//循环建堆
for(int i=0;i<arrayLength-1;i++){
//建堆
buildMaxHeap(a,arrayLength-1-i);
//交换堆顶和最后一个元素
swap(a,0,arrayLength-1-i);
System.out.println(Arrays.toString(a));
}
}
//对data数组从0到lastIndex建大顶堆
public static void buildMaxHeap(int[] data, int lastIndex){
//从lastIndex处节点(最后一个节点)的父节点开始
for(int i=(lastIndex-1)/2;i>=0;i--){
//k保存正在判断的节点
int k=i;
//如果当前k节点的子节点存在
while(k*2+1<=lastIndex){
//k节点的左子节点的索引
int biggerIndex=2*k+1;
//如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
if(biggerIndex<lastIndex){
//若果右子节点的值较大
if(data[biggerIndex]<data[biggerIndex+1]){
//biggerIndex总是记录较大子节点的索引
biggerIndex++;
}
}
//如果k节点的值小于其较大的子节点的值
if(data[k]<data[biggerIndex]){
//交换他们
swap(data,k,biggerIndex);
//将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
k=biggerIndex;
}else{
break;
}
}
}
}
//交换
private static void swap(int[] data, int i, int j) {
int tmp=data[i];
data[i]=data[j];
data[j]=tmp;
}
}
8
package Sort;
/**
* 归并排序思想
* 归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,
* 即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
*
* 1、j=m+1;k=i;i=i; //置两个子表的起始下标及辅助数组的起始下标
2、若i>m 或j>n,转⑷ //其中一个子表已合并完,比较选取结束
3、//选取r[i]和r[j]较小的存入辅助数组rf
如果r[i]<r[j],rf[k]=r[i]; i++; k++; 转⑵
否则,rf[k]=r[j]; j++; k++; 转⑵
4、//将尚未处理完的子表中元素存入rf
如果i<=m,将r[i…m]存入rf[k…n] //前一子表非空
如果j<=n , 将r[j…n] 存入rf[k…n] //后一子表非空
5、合并结束。
* @author 2000105959
*
*/
public class SortDB {
public static int[] sort(int[] nums, int low, int high) {
int mid = (low + high) / 2;
if (low < high) {
// 左边
sort(nums, low, mid);
// 右边
sort(nums, mid + 1, high);
// 左右归并
merge(nums, low, mid, high);
}
return nums;
}
/**
* 将数组中low到high位置的数进行排序
* @param nums 待排序数组
* @param low 待排的开始位置
* @param mid 待排中间位置
* @param high 待排结束位置
*/
public static void merge(int[] nums, int low, int mid, int high) {
int[] temp = new int[high - low + 1];
int i = low;// 左指针
int j = mid + 1;// 右指针
int k = 0;
// 把较小的数先移到新数组中
while (i <= mid && j <= high) {
if (nums[i] < nums[j]) {
temp[k++] = nums[i++];
} else {
temp[k++] = nums[j++];
}
}
// 把左边剩余的数移入数组
while (i <= mid) {
temp[k++] = nums[i++];
}
// 把右边边剩余的数移入数组
while (j <= high) {
temp[k++] = nums[j++];
}
// 把新数组中的数覆盖nums数组
for (int k2 = 0; k2 < temp.length; k2++) {
nums[k2 + low] = temp[k2];
}
}
}