Sicily 1922. Winning Ways

尼姆博奕中,奇异局势是指面对该局势的人必败的状况,表现为所有堆石子数量的异或和为0。本文探讨了如何通过保持或改变Nim-sum至0来确保胜利,并提供了数学证明。当Nim-sum为0时,玩家无法获胜;反之,玩家可通过适当操作将Nim-sum变为0,从而赢得游戏。
摘要由CSDN通过智能技术生成

题目
Problem

尼姆博奕(Nimm Game)
两个人从N堆石子中的任意一堆任取1个或多个,取到没得取的人为负者。

奇异局势
如果面对一种局势的人是必败的,那么这种局势叫做奇异局势。比如如果N堆石子都是0个,那么先取者面对的(0,0,0,…,0)就是一种奇异局势。
如果我想让我的对手输,我会想尽办法让他面对奇异局势。
奇异局势有这样一种性质,比如现在的N堆石子的数目为a1,a2,a3,…,aN,那么:
a1⊕a2⊕a3⊕…⊕aN=0。
a1⊕a2⊕a3⊕…⊕aN一般称为Nim-sum

为什么Nim-sum=0的局势是奇异局势?
也就是说,为什么当玩家面对Nim-sum=0的时候,他是必输的?
这篇论文有比较好的解释:
http://web.mit.edu/sp.268/www/nim.pdf
下面试着翻译为中文:
证明:如果一个玩家想在尼姆博奕的游戏中胜出,他应该让Nim-sum值为0。

引理1 如果在某一轮中Nim-sum=0,那么下一次的操作必然会改变

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值