1.概念
二叉树是树结构的一种,规定每个结点最多有两棵子树,所以二叉树中不存在度大于2的结点。注:不是都需要两棵子树,而是最多!二叉树的左子树和右子树是有顺序的,不能颠倒,颠倒了那就是不同的树,即使只有一个子树也是要区分顺序的,如下是两个完全不同的二叉树
二叉树存在以下五种基本形态
满二叉树:如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,即上图中最右边那个树,只有最下一层是叶子。
完全二叉树:叶子出现在最下面两层,倒数第二层是满的,最下面一层的叶子集中在左部连续位置,不能从中间断开。满二叉树一定是完全二叉树,而完全二叉树不一定是满二叉树。
2.二叉树的存储结构及遍历
二叉树因为最多只有两个结点,因此每个结点由一个数据域和两个指针域组成,指针域分别指向左右两个孩子。对于二叉树的存储,可以使用顺序存储方式,即数组。但是使用顺序存储的方式适用性不强,因此实际中使用链式存储结构,其结构如下图
二叉树的遍历:是指从根结点出发,按照某种次序依次访问二叉树中所有结点,使得每个结点被访问依次且仅被访问一次。主要用到的遍历方式有前序遍历、中序遍历和后序遍历。这里次序是指对根节点的访问顺序,包括子树的根节点,下图是对一个二叉树的前序遍历的结果
可以看到,对于整个大的树,A是根结点因此最先被访问,对于由BDEHIJ形成的子树,B是子节点因此在这个子树中最先被访问,同样的对于CFG形成的子树C最先被访问。下图是中序遍历的结果
下图是后序遍历的结果
3.实现
输入时按照前序遍历的方式输入,以 '.' 表示某结点指针域为空。输入为 AB.D..CE...
#include <iostream>
using namespace std;
typedef struct BinTNode {
char data;
BinTNode *lchild, *rchild;
} BinTNode;
void visit(char data, int level) {
cout << data << " is in level " << level << endl;
}
void preOrder(BinTNode *t, int level) {
if (t) {
visit(t->data, level);
preOrder(t->lchild, level + 1);
preOrder(t->rchild, level + 1);
}
}
void inOrder(BinTNode *t, int level) {
if (t) {
inOrder(t->lchild, level + 1);
visit(t->data, level);
inOrder(t->rchild, level + 1);
}
}
void createTree(BinTNode **t) {
char c;
c = getchar();
if ('.' == c) {
*t = nullptr;
} else {
(*t) = new BinTNode;
(*t)->data = c;
createTree(&(*t)->lchild);
createTree(&(*t)->rchild);
}
}
int main() {
int level = 1;
BinTNode *root = nullptr;
createTree(&root);
preOrder(root, level);
//inOrder(root,level);
return 0;
}
关于为什么用二级指针:
一开始这里创建树时写的是一级指针,然而代码运行时直接出错,改为二级指针就没问题了,想了好久终于明白,在遍历函数中我们只需要访问某个位置的数据,因此获取到其地址就好,就好比用函数打印出参数,用不用指针无所谓,然而函数要修改参数的话,就要用指针了(这里不提引用),而在代码中,首先定义了一个根结点,创建树时是需要往根结点上挂东西,形成链式结构,即需要改变根节点指针所指向的地址,我们需要修改根节点这个指针!因此需要指向根节点的指针,自然也就是二级指针了,如果是一级指针的话,创建函数中的那个指针只是根节点的副本,因此出错!