tensorflow
疯狂的程序猿88888
忘性太大,解决的问题赶紧写博客记下来
展开
-
TF-Serving从导出模型到部署服务源码
TF-Serving从导出模型到部署服务源码(Keras) 1.模型保存好之后,使用Keras的模型保存方法保存模型 model.save('my_model.h5') 常见的模型有h5和.keras h5文件包含 ·模型的结构,以便重构该模型 ·模型的权重 ·训练的配置(损失函数,优化器等) ·优化器的状态,以便于从上次训练中断的地方开始 2.使用SavedModel将模型...原创 2020-04-21 11:58:42 · 571 阅读 · 0 评论 -
Tensorflow-serving部署模型到服务器
Tensorflow-serving部署模型到服务器 1.启动docker systemctl start docker 2.查看已经下载的镜像 docker images 如果没有,那么拉取镜像 docker pull tensorflow/serving 4.在服务器启动docker docker run -t --rm -p 8501:8501 -v /root/keras_tf_ser...原创 2020-04-21 11:14:15 · 554 阅读 · 1 评论