写给大数据开发的,要给领导汇报什么?

上篇:写给大数据开发,如何去掌握数据分析

就像说经济学家不炒股一样,有些数据开发不喜欢讲数据📊,就很离谱…自己不讲数据,不相信数据,别人也不敢用了~
image.png

所以找上级汇报,当然是汇报数据,优秀的领导人不需要下级的阿谀奉承,需要的是有数据支撑的独特内容。管理决策离不开数据支持,没有精确数据就没有正确管理。

1. 汇报的核心内容

首先,我们必须认识到,优秀的领导者不依赖下属的奉承,而是重视基于数据的独到见解。拍马屁的人很多,讲数据的寥寥。

例如,如果要汇报APP的市场表现,仅仅说“APP表现良好”是不够的。我们需要具体的数据来支持这一观点,比如:

  • 激活用户数增长了20%;
  • APP星级提升了15%;
  • 留存达到了30%。

这些具体的数据可以帮助领导更好地理解产品的市场表现。
image.png

2. 上级与下级的信息差距

由于上级领导通常远离业务一线,他们可能对业务的基础数据缺乏直接的感受。(很多时候领导天天开会,自顾不暇,更不知道下面的人做了啥)

因此,下级在汇报时需要用数据来弥补这种信息差距。例如,通过展示以下SQL查询结果,我们可以向上级展示最近一个月内顾客投诉的增长趋势:

SELECT 
Date
, COUNT(ComplaintID) AS NumberOfComplaints 
FROM Complaints 
WHERE Date BETWEEN '2023-01-01' AND '2023-01-31' 
GROUP BY Date 
ORDER BY Date;

要对自己的sql有自信,毕竟有些sql可是gpt都写不出来,自己写出来了,要相信自己

这个查询结果可以直观地展示出顾客投诉数量的日增长趋势,为上级提供了直接的数据支持。

3. 数据的具体要求

在汇报数据时,我们需要确保数据的准确性和来源的清晰性。

例如,如果我们使用Python进行数据分析,我们可能会编写如下代码来预处理数据,并确保数据的准确性:

import pandas as pd

# 加载数据
data = pd.read_csv('sales_data.csv')

# 数据清洗
data.dropna(inplace=True)  # 删除缺失值
data = data[data['Sales'] > 0]  # 删除销售额为负的记录

# 数据分析
monthly_sales = data.groupby('Month')['Sales'].sum()
print(monthly_sales)

通过这种方式,我们可以确保向上级汇报的销售数据是准确和可靠的。

(千万不要以为,搬运数据就不会有错,必须清洗之后的数据才是可用的,有些异常的值对数据影响很大,比如APP使用时长,有人使用个100小时,直接整个数据都跳动了)

4. 数据的创新与深度挖掘

在向上级汇报时,我们还需要展示我们的数据分析能力,通过创新的角度来分析数据(其实就是多维度分析…)。例如,我们可以使用Python来分析顾客投诉的主要原因,并将结果可视化:

import matplotlib.pyplot as plt

# 假设complaint_reasons是一个包含投诉原因的Pandas Series
complaint_reasons.value_counts().plot(kind='bar')
plt.title('Complaint Reasons Analysis')
plt.xlabel('Reason')
plt.ylabel('Number of Complaints')
plt.show()

通过这个图表,我们可以直观地向上级展示哪些原因导致了顾客的投诉,从而帮助上级做出针对性的改进措施。

5. 沟通数据的三个特征

  1. 数据准确翔实:确保汇报的数据不仅准确无误,还要具有代表性和时效性。
  2. 数据来源清晰:在汇报时,明确指出数据的来源,是否经过验证,以及采集和分析数据的方法。这增加了汇报内容的可信度。
  3. 数据可以质疑:准备好应对上级可能的质疑,这意味着你需要对数据的每个细节都了如指掌。例如,如果上级对某个数据点表示怀疑,你应该能迅速提供该数据的来源、采集时间、以及分析方法等信息
    image.png

例如,如果我们正在分析APP用户的活跃度和留存率,以下是一个例子,假设我们有一个用户登录记录表user_logins,包含用户ID和登录日期。

CREATE TABLE user_logins (
    user_id INT,
    login_date DATE
);

-- 示例
INSERT INTO user_logins (user_id, login_date) VALUES
(1, '2024-05-01'), (2, '2024-05-02'), (3, '2024-05-03'), 
(4, '2024-05-04'), (5, '2024-05-05'), (1, '2024-06-01'), 
(2, '2024-06-02'), (3, '2024-06-03'), (4, '2024-06-04'), 
(5, '2024-06-05');

-- 计算活跃和留存
WITH first_login AS (
    SELECT 
        user_id,
        MIN(login_date) AS first_login_date
    FROM 
        user_logins
    GROUP BY 
        user_id
),
recent_logins AS (
    SELECT 
        user_id,
        COUNT(DISTINCT login_date) AS recent_logins_count
    FROM 
        user_logins
    WHERE 
        login_date >= DATE_SUB(CURDATE(), INTERVAL 30 DAY)
    GROUP BY 
        user_id
)
SELECT 
    COUNT(DISTINCT rl.user_id) AS active_users,
    COUNT(DISTINCT rl.user_id) * 100.0 / COUNT(DISTINCT fl.user_id) AS retention_rate
FROM 
    first_login fl
LEFT JOIN 
    recent_logins rl
ON 
    fl.user_id = rl.user_id
WHERE 
    fl.first_login_date <= DATE_SUB(CURDATE(), INTERVAL 30 DAY);

查询解释

  1. first_login: 找到每个用户的第一次登录日期。
  2. recent_logins: 统计最近一个月每个用户的登录次数。
  3. 最后,通过LEFT JOIN将两个表连接起来,计算出最近一个月的活跃用户数和留存率。

输出结果
该查询将输出两个值:
active_users: 最近一个月的活跃用户数。
retention_rate: 计算出的留存率(以百分比表示)。

如这样,有过程、有解释,面对领导的质问也不怕了

6. 案例研究:提升客户满意度

假设你是一家电商平台的数据开发(兼职做数据分析了,公司就是这样薅员工羊毛),需要向上级汇报关于提升客户满意度的分析结果。你可以采取以下步骤:

  1. 数据收集:使用SQL查询从数据库中提取最近六个月的客户服务记录和客户反馈数据。
  2. 数据分析:数据量少可以使用Python进行数据清洗和分析,识别客户不满意的主要原因。例如,你可能发现大部分不满意的客户都抱怨配送延迟。。
import pandas as pd

# 假设df是包含客户反馈的DataFrame
complaints_df = df[df['Feedback'] == 'Negative']
delay_complaints = complaints_df[complaints_df['ComplaintType'] == 'Delivery Delay']
delay_reasons = delay_complaints['Reason'].value_counts()
print(delay_reasons)
  1. 提出建议:基于数据分析的结果,提出具体的改进建议。例如,增加物流合作伙伴,优化配送路线等。
  2. 数据可视化:使用图表展示客户不满意的主要原因和建议的潜在影响,增强汇报的说服力。

通过这样详细而具体的数据分析和汇报,你不仅能够向上级清晰地展示问题所在,还能提供基于数据的解决方案,极大地提升汇报的效果

结论

数据是大数据开发向上沟通的命脉。通过提供准确、清晰来源的数据,以及通过创新的数据分析方法,大数据开发人员可以有效地向上级汇报,帮助企业做出更加明智的决策。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据小羊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值