概率统计Python计算:中心极限定理的验证

本文通过实例演示中心极限定理,即独立同分布随机变量序列的均值在大样本情况下趋近正态分布,使用θ~U(-π/2, π/2)和V=380sinθ来展示这一过程,并通过编程验证了定理,包括计算期望和方差,以及生成随机变量的分布和直方图。

在这里插入图片描述
中心极限定理告诉我们,独立同分布的随机变量序列 X 1 , X 2 , ⋯   , X n , ⋯ X_1,X_2,\cdots,X_n,\cdots X1,X2,,Xn,,若 E ( X i ) = μ E(X_i)=\mu E(Xi)=μ D ( X i ) = σ 2 D(X_i)=\sigma^2 D(Xi)=σ2 i = 1 , 2 , ⋯ i=1,2,\cdots i=1,2,。则
lim ⁡ n → ∞ P ( ∣ ∑ i = 1 n X i n − μ σ n ∣ ≤ x ) = 1 2 π ∫ − ∞ x e − t 2 2 d t . \lim\limits_{n\to\infty}P\left(\bigg|\frac{\frac{\sum_{i=1}^{n}X_i}{n}-\mu}{\frac{\sigma}{\sqrt{n}}}\bigg|\leq x\right)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}e^{-\frac{t^2}{2}}dt. nlimP( n σni=1nXiμ x)=2π 1xe2t2dt.
即无论诸 X i X_i Xi

评论 4
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值