
中心极限定理告诉我们,独立同分布的随机变量序列 X 1 , X 2 , ⋯ , X n , ⋯ X_1,X_2,\cdots,X_n,\cdots X1,X2,⋯,Xn,⋯,若 E ( X i ) = μ E(X_i)=\mu E(Xi)=μ, D ( X i ) = σ 2 D(X_i)=\sigma^2 D(Xi)=σ2, i = 1 , 2 , ⋯ i=1,2,\cdots i=1,2,⋯。则
lim n → ∞ P ( ∣ ∑ i = 1 n X i n − μ σ n ∣ ≤ x ) = 1 2 π ∫ − ∞ x e − t 2 2 d t . \lim\limits_{n\to\infty}P\left(\bigg|\frac{\frac{\sum_{i=1}^{n}X_i}{n}-\mu}{\frac{\sigma}{\sqrt{n}}}\bigg|\leq x\right)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}e^{-\frac{t^2}{2}}dt. n→∞limP(
nσn∑i=1nXi−μ
≤x)=2π1∫−∞xe−2t2dt.
即无论诸 X i X_i Xi
概率统计Python计算:中心极限定理的验证
于 2021-05-13 19:28:02 首次发布
本文通过实例演示中心极限定理,即独立同分布随机变量序列的均值在大样本情况下趋近正态分布,使用θ~U(-π/2, π/2)和V=380sinθ来展示这一过程,并通过编程验证了定理,包括计算期望和方差,以及生成随机变量的分布和直方图。

最低0.47元/天 解锁文章
1057





