概率统计Python计算:随机变量的线性回归

在这里插入图片描述
若随机向量 ( X , Y ) (X,Y) (X,Y)存在相关系数 ρ X Y \rho_{XY} ρXY,由
E [ ( Y − ( a X + b ) ) 2 ] = D ( Y ) + a 2 D ( X ) − 2 a Cov ( Y , X ) + ( E ( Y ) − a E ( X ) − b ) 2 = D ( Y ) ( 1 − ρ X Y 2 ) + D ( X ) ( a − ρ X Y D ( Y ) D ( X ) ) 2 + ( E ( Y ) − a E ( X ) − b ) 2 E[(Y-(aX+b))^2]=D(Y)+a^2D(X)-2a\text{Cov}(Y, X)+(E(Y)-aE(X)-b)^2\\ =D(Y)(1-\rho_{XY}^{2})+D(X)\left(a-\rho_{XY}\sqrt{\frac{D(Y)}{D(X)}}\right)^2+(E(Y)-aE(X)-b)^2 E[(Y(aX+b))2]=D(Y)+a2D(X)2aCov(Y,X)+(E(Y)aE(X)b)2=D(Y)(1ρXY2)+D(X)(aρXYD(X)D(Y) )2+(E(Y)aE(X)b)2

{ a = ρ X Y D ( Y ) D ( X ) b = E ( Y ) − a E ( X ) \begin{cases}a=\rho_{XY}\sqrt{\frac{D(Y)}{D(X)}}\\b=E(Y)-aE(X)\end{cases} {a=ρXYD(X)D(Y) b=E(Y)aE(X)
时,即
{ a = ρ X Y D ( Y ) D ( X ) b = E ( Y ) − ρ X Y D ( Y ) D ( X ) E ( X ) \begin{cases}a=\rho_{XY}\sqrt{\frac{D(Y)}{D(X)}}\\b=E(Y)-\rho_{XY}\sqrt{\frac{D(Y)}{D(X)}}E(X)\end{cases} a=ρXYD(X)D(Y) b=E(Y)ρXYD(X)D(Y) E(X)
E [ ( Y − ( a X + b ) ) 2 ] E[(Y-(aX+b))^2] E[(Y(aX+b))2]最小,等于 D ( Y ) ( 1 − ρ X Y 2 ) D(Y)(1-\rho_{XY}^{2}) D(Y)(1ρXY2)。此时,称 a X + b aX+b aX+b Y Y Y对于 X X X线性回归 Y Y Y X X X的线性回归 a X + b aX+b aX+b中系数 a a a b b b的取值 ρ X Y D ( Y ) D ( X ) \rho_{XY}\sqrt{\frac{D(Y)}{D(X)}} ρXYD(X)D(Y) E ( Y ) − ρ X Y D ( Y ) D ( X ) E ( X ) E(Y)-\rho_{XY}\sqrt{\frac{D(Y)}{D(X)}}E(X) E(Y)ρXYD(X)D(Y) E(X)称为 Y Y Y X X X回归系数。相仿地, X X X Y Y Y的线性回归为 a Y + b aY+b aY+b,其中
{ a = ρ X Y D ( X ) D ( Y ) b = E ( X ) − ρ X Y D ( X ) D ( Y ) E ( Y ) . \begin{cases}a=\rho_{XY}\sqrt{\frac{D(X)}{D(Y)}}\\b=E(X)-\rho_{XY}\sqrt{\frac{D(X)}{D(Y)}}E(Y)\end{cases}. a=ρXYD(Y)D(X) b=E(X)ρXYD(Y)D(X) E(Y).
例1 设随机向量 ( X , Y ) (X,Y) (X,Y)的联合分布律为
在这里插入图片描述
计算 Y Y Y对于 X X X的线性回归。
解: 先计算出 X X X Y Y Y的边缘分布:
在这里插入图片描述

在这里插入图片描述
从而算得 E ( X ) = 8 3 E(X)=\frac{8}{3} E(X)=38 E ( Y ) = 3 E(Y)=3 E(Y)=3 D ( X ) = 2.22 D(X)=2.22 D(X)=2.22 D ( Y ) = 2 D(Y)=2 D(Y)=2
E ( X Y ) = 8.125 E(XY)=8.125 E(XY)=8.125,于是 Cov ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) = 0.125 \text{Cov}(X, Y)=E(XY)-E(X)E(Y)=0.125 Cov(X,Y)=E(XY)E(X)E(Y)=0.125。进而 ρ X Y = Cov ( X , Y ) D ( X ) D ( Y ) = 0.593 \rho_{XY}=\frac{\text{Cov}(X, Y)}{\sqrt{D(X)}\sqrt{D(Y)}}=0.593 ρXY=D(X) D(Y) Cov(X,Y)=0.593。最终得到
{ a = ρ X Y D ( Y ) D ( X ) = 0.056 b = E ( Y ) − a E ( X ) = 2.85 . \begin{cases}a=\rho_{XY}\sqrt{\frac{D(Y)}{D(X)}}=0.056\\b=E(Y)-aE(X)=2.85\end{cases}. {a=ρXYD(X)D(Y) =0.056b=E(Y)aE(X)=2.85.
即, Y Y Y对于 X X X的线性回归为 0.056 X + 2.85 0.056X+2.85 0.056X+2.85
下列代码验算本例的计算结果。

import numpy as np                                      #导入numpy
X=np.array([1, 2, 3, 4, 5])                             #X的取值
Y=np.array([1, 2, 3, 4, 5])                             #Y的取值
Pxy=np.array([[1/12, 1/24, 1/12, 1/12, 1/24],           #联合分布律的概率矩阵
             [1/24, 1/24, 1/24, 0, 1/24],
             [0, 1/24, 1/24, 1/24, 1/24],
             [1/24, 1/24, 0, 1/24, 1/24],
             [1/30, 1/30, 1/30, 1/30, 1/30]])
Ex=expect(Pxy, X)                                       #E(X)
Ex2=expect(Pxy, X, func=lambda x, y: x*x)               #E(X^2)
sigmax=np.sqrt(Ex2-Ex**2)                               #X的标准差
Ey=expect(Pxy,Yv=Y, func=lambda x,y:y)                  #E(Y)
Ey2=expect(Pxy, Yv=Y, func=lambda x, y: y*y)            #E(Y^2)
sigmay=np.sqrt(Ey2-Ey**2)                               #Y的标准差
Exy=expect(Pxy, X, Y, lambda x, y:x*y)                  #E(XY)
rho=rhoxy(Exy, Ex, Ey, sigmax, sigmay)                  #X,Y的相关系数
a=rho*sigmay/sigmax                                     #回归系数a
b=Ey-a*Ex                                               #回归系数b
print('Y=%.3f*X+%.3f'%(a, b))                           #Y对X的线性回归

借助程序中各行注释,不难理解代码意义。其中,第9、10、12、13和15调用计算离散型随机变量期望的函数expect(定义见博文《离散型自定义分布数学期望的计算》),分别计算 E ( X ) E(X) E(X) E ( X 2 ) E(X^2) E(X2) E ( Y ) E(Y) E(Y) E ( Y 2 ) E(Y^2) E(Y2) E ( X Y ) E(XY) E(XY)。第16行调用计算随机变量 ( X , Y ) (X, Y) (X,Y)的相关系数 ρ X Y \rho_{XY} ρXY的函数rhoxy(定义见博文《协方差与相关系数计算》)运行程序,输出

Y=0.056*X+2.850

写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值