HOJ 12847 Dwarf Tower (最短路)

题目大意:有N样物品,这N样物品得到有2种方式,一种是直接花费这件物品所需要的COST,一种是可能有2个物品可以合成这个物品,那么花费就是那2个物品的COST之和,现在要得到物品1,求最小花费。

此题我一开始用DFS写。。那写的让我晕死啊。。因为可能会出现环,即这个物品A可以跟别的合成物品B,而物品B也可以跟别的合成物品A,这还不难,如果是那种比较长的环呢?。思路僵持,想了好多种方案都是WA。

其实就是一个最短路的问题,只不过特殊的是这个图的边权会改变,用SPFA的思想,到达这个点被更新了,那么这个点就要加入队列去更新与它相连的点,更新到结束就可以求得解。另外此题用DIJKSTRA也可以,因为是贪心的,即最短的路径点先出来,而这道题得到物品的第二种方法也是进行费用相加,所以最小的意味着没有物品可以更新它,从而它的花费就一定是最小的。

这题有一万个点,用邻接矩阵写会暴内存,我用了2种方法,一种是邻接表(还用数组模拟队列这样更快),一种在标程里学到的,用vector加上pair,这样就相当于1个点保存了2个值,一个是可以到达的点,一个是另一个跟他组合到达前者的点。

AC代码1:

#include<cstdio>
#include<ctype.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<ctime>
using namespace std;
#define NMAX 50000000
#define MOD 1000000007

#define ll __int64
int cost[10005];
bool inq[10005];

struct edge
{
    int to;
    int w;
    int bro;
}edge[200005];
int next[10005],q[500005];
int main()
{
    //freopen("input.txt","r",stdin);
    //freopen("o1.txt","w",stdout);
    int i,j,n,m;
    while(~scanf("%d%d",&n,&m))
    {
        memset(next,-1,sizeof(next));
        for(i = 1; i <= n; i++)
            scanf("%d",&cost[i]);
        for(i = 0; i < m*2; i+=2)
        {
            int from,to,w;
            scanf("%d%d%d",&to,&from,&w);
            edge[i].to = to;
            edge[i].bro = next[from];
            edge[i].w = w;
            next[from] = i;

            edge[i+1].to = to;
            edge[i+1].bro = next[w];
            edge[i+1].w = from;
            next[w] = i+1;
        }
        int head = 0,tail = 0;
        for(i = 2; i <= n; i++)
        {
            inq[i] = 1;
            q[tail++] = i;
        }
        while(head < tail)
        {
            int x = q[head];
            inq[x] = false;
            for(i = next[x]; i != -1; i = edge[i].bro) if(cost[edge[i].to] > cost[x]+cost[edge[i].w])
            {
                cost[edge[i].to] = cost[x]+cost[edge[i].w];
//                cout<<cost[edge[i].to]<<endl;
//                printf("x: %d cost[%d]=%d\n",x,edge[i].to,cost[edge[i].w]);
                if(!inq[i])
                {
                    inq[i] = true;
                    q[tail++] = edge[i].to;
                }
            }
            head++;
        }
        printf("%d\n",cost[1]);
    }
    return 0;
}

AC代码2:

#include<cstdio>
#include<ctype.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<ctime>
using namespace std;
#define NMAX 50000000
#define MOD 1000000007
#define pb push_back
#define ll __int64
int cost[10005];
bool inq[10005];
vector<pair<int, int> >w[10005];
int main()
{
    //freopen("input.txt","r",stdin);
    //freopen("o1.txt","w",stdout);
    int i,j,n,m;
    while(~scanf("%d%d",&n,&m))
    {
        for(i = 1; i <= n; i++)
        {
            scanf("%d",&cost[i]);
            w[0].pb(make_pair(i,i));
        }
        for(i = 1; i <= m; i++)
        {
            int t1,t2,t3;
            scanf("%d%d%d",&t1,&t2,&t3);
            w[t2].pb(make_pair(t1,t3));
            w[t3].pb(make_pair(t1,t2));
        }
        queue<int>q;
        cost[0] = 0;
        for(i = 0; i <= n; i++)
        {
            inq[i] = 1;
            q.push(i);
        }
        while(!q.empty())
        {
            int x = q.front();
            q.pop();
            inq[x] = false;
            int len = w[x].size();
            for(i = 0; i < len; i++) if(cost[w[x][i].first] > cost[x]+cost[w[x][i].second])
            {
                cost[w[x][i].first] = cost[x]+cost[w[x][i].second];
//                printf("cost[%d]=%d\n",w[x][i].first,cost[w[x][i].first]);
                if(!inq[w[x][i].first])
                {
                    inq[w[x][i].first] = true;
                    q.push(w[x][i].first);
                }
            }
        }
        printf("%d\n",cost[1]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值