HOJ 12847 Dwarf Tower (最短路)

本文探讨了一个涉及物品合成和最小花费的问题,通过SPFA算法解决了环形依赖的复杂情况,提供了两种实现方法,并详细解释了算法选择背后的逻辑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目大意:有N样物品,这N样物品得到有2种方式,一种是直接花费这件物品所需要的COST,一种是可能有2个物品可以合成这个物品,那么花费就是那2个物品的COST之和,现在要得到物品1,求最小花费。

此题我一开始用DFS写。。那写的让我晕死啊。。因为可能会出现环,即这个物品A可以跟别的合成物品B,而物品B也可以跟别的合成物品A,这还不难,如果是那种比较长的环呢?。思路僵持,想了好多种方案都是WA。

其实就是一个最短路的问题,只不过特殊的是这个图的边权会改变,用SPFA的思想,到达这个点被更新了,那么这个点就要加入队列去更新与它相连的点,更新到结束就可以求得解。另外此题用DIJKSTRA也可以,因为是贪心的,即最短的路径点先出来,而这道题得到物品的第二种方法也是进行费用相加,所以最小的意味着没有物品可以更新它,从而它的花费就一定是最小的。

这题有一万个点,用邻接矩阵写会暴内存,我用了2种方法,一种是邻接表(还用数组模拟队列这样更快),一种在标程里学到的,用vector加上pair,这样就相当于1个点保存了2个值,一个是可以到达的点,一个是另一个跟他组合到达前者的点。

AC代码1:

#include<cstdio>
#include<ctype.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<ctime>
using namespace std;
#define NMAX 50000000
#define MOD 1000000007

#define ll __int64
int cost[10005];
bool inq[10005];

struct edge
{
    int to;
    int w;
    int bro;
}edge[200005];
int next[10005],q[500005];
int main()
{
    //freopen("input.txt","r",stdin);
    //freopen("o1.txt","w",stdout);
    int i,j,n,m;
    while(~scanf("%d%d",&n,&m))
    {
        memset(next,-1,sizeof(next));
        for(i = 1; i <= n; i++)
            scanf("%d",&cost[i]);
        for(i = 0; i < m*2; i+=2)
        {
            int from,to,w;
            scanf("%d%d%d",&to,&from,&w);
            edge[i].to = to;
            edge[i].bro = next[from];
            edge[i].w = w;
            next[from] = i;

            edge[i+1].to = to;
            edge[i+1].bro = next[w];
            edge[i+1].w = from;
            next[w] = i+1;
        }
        int head = 0,tail = 0;
        for(i = 2; i <= n; i++)
        {
            inq[i] = 1;
            q[tail++] = i;
        }
        while(head < tail)
        {
            int x = q[head];
            inq[x] = false;
            for(i = next[x]; i != -1; i = edge[i].bro) if(cost[edge[i].to] > cost[x]+cost[edge[i].w])
            {
                cost[edge[i].to] = cost[x]+cost[edge[i].w];
//                cout<<cost[edge[i].to]<<endl;
//                printf("x: %d cost[%d]=%d\n",x,edge[i].to,cost[edge[i].w]);
                if(!inq[i])
                {
                    inq[i] = true;
                    q[tail++] = edge[i].to;
                }
            }
            head++;
        }
        printf("%d\n",cost[1]);
    }
    return 0;
}

AC代码2:

#include<cstdio>
#include<ctype.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<ctime>
using namespace std;
#define NMAX 50000000
#define MOD 1000000007
#define pb push_back
#define ll __int64
int cost[10005];
bool inq[10005];
vector<pair<int, int> >w[10005];
int main()
{
    //freopen("input.txt","r",stdin);
    //freopen("o1.txt","w",stdout);
    int i,j,n,m;
    while(~scanf("%d%d",&n,&m))
    {
        for(i = 1; i <= n; i++)
        {
            scanf("%d",&cost[i]);
            w[0].pb(make_pair(i,i));
        }
        for(i = 1; i <= m; i++)
        {
            int t1,t2,t3;
            scanf("%d%d%d",&t1,&t2,&t3);
            w[t2].pb(make_pair(t1,t3));
            w[t3].pb(make_pair(t1,t2));
        }
        queue<int>q;
        cost[0] = 0;
        for(i = 0; i <= n; i++)
        {
            inq[i] = 1;
            q.push(i);
        }
        while(!q.empty())
        {
            int x = q.front();
            q.pop();
            inq[x] = false;
            int len = w[x].size();
            for(i = 0; i < len; i++) if(cost[w[x][i].first] > cost[x]+cost[w[x][i].second])
            {
                cost[w[x][i].first] = cost[x]+cost[w[x][i].second];
//                printf("cost[%d]=%d\n",w[x][i].first,cost[w[x][i].first]);
                if(!inq[w[x][i].first])
                {
                    inq[w[x][i].first] = true;
                    q.push(w[x][i].first);
                }
            }
        }
        printf("%d\n",cost[1]);
    }
    return 0;
}


内容概要:本文详细介绍了QY20B型汽车起重机液压系统的设计过程,涵盖其背景、发展史、主要运动机构及其液压回路设计。文章首先概述了汽车起重机的分类和发展历程,强调了液压技术在现代起重机中的重要性。接着,文章深入分析了QY20B型汽车起重机的五大主要运动机构(支腿、回转、伸缩、变幅、起升)的工作原理及相应的液压回路设计。每个回路的设计均考虑了性能要求、功能实现及工作原理,确保系统稳定可靠。此外,文章还详细计算了支腿油缸的受力、液压元件的选择及液压系统的性能验算,确保设计的可行性和安全性。 适合人群:从事工程机械设计、液压系统设计及相关领域的工程师和技术人员,以及对起重机技术感兴趣的高等院校学生和研究人员。 使用场景及目标:①为从事汽车起重机液压系统设计的工程师提供详细的参考案例;②帮助技术人员理解和掌握液压系统设计的关键技术和计算方法;③为高等院校学生提供学习和研究起重机液压系统设计的实用资料。 其他说明:本文不仅提供了详细的液压系统设计过程,还结合了实际工程应用,确保设计的实用性和可靠性。文中引用了大量参考文献,确保设计依据的科学性和权威性。阅读本文有助于读者深入了解汽车起重机液压系统的设计原理和实现方法,为实际工程应用提供有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值