题目大意:有N样物品,这N样物品得到有2种方式,一种是直接花费这件物品所需要的COST,一种是可能有2个物品可以合成这个物品,那么花费就是那2个物品的COST之和,现在要得到物品1,求最小花费。
此题我一开始用DFS写。。那写的让我晕死啊。。因为可能会出现环,即这个物品A可以跟别的合成物品B,而物品B也可以跟别的合成物品A,这还不难,如果是那种比较长的环呢?。思路僵持,想了好多种方案都是WA。
其实就是一个最短路的问题,只不过特殊的是这个图的边权会改变,用SPFA的思想,到达这个点被更新了,那么这个点就要加入队列去更新与它相连的点,更新到结束就可以求得解。另外此题用DIJKSTRA也可以,因为是贪心的,即最短的路径点先出来,而这道题得到物品的第二种方法也是进行费用相加,所以最小的意味着没有物品可以更新它,从而它的花费就一定是最小的。
这题有一万个点,用邻接矩阵写会暴内存,我用了2种方法,一种是邻接表(还用数组模拟队列这样更快),一种在标程里学到的,用vector加上pair,这样就相当于1个点保存了2个值,一个是可以到达的点,一个是另一个跟他组合到达前者的点。
AC代码1:
#include<cstdio>
#include<ctype.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<ctime>
using namespace std;
#define NMAX 50000000
#define MOD 1000000007
#define ll __int64
int cost[10005];
bool inq[10005];
struct edge
{
int to;
int w;
int bro;
}edge[200005];
int next[10005],q[500005];
int main()
{
//freopen("input.txt","r",stdin);
//freopen("o1.txt","w",stdout);
int i,j,n,m;
while(~scanf("%d%d",&n,&m))
{
memset(next,-1,sizeof(next));
for(i = 1; i <= n; i++)
scanf("%d",&cost[i]);
for(i = 0; i < m*2; i+=2)
{
int from,to,w;
scanf("%d%d%d",&to,&from,&w);
edge[i].to = to;
edge[i].bro = next[from];
edge[i].w = w;
next[from] = i;
edge[i+1].to = to;
edge[i+1].bro = next[w];
edge[i+1].w = from;
next[w] = i+1;
}
int head = 0,tail = 0;
for(i = 2; i <= n; i++)
{
inq[i] = 1;
q[tail++] = i;
}
while(head < tail)
{
int x = q[head];
inq[x] = false;
for(i = next[x]; i != -1; i = edge[i].bro) if(cost[edge[i].to] > cost[x]+cost[edge[i].w])
{
cost[edge[i].to] = cost[x]+cost[edge[i].w];
// cout<<cost[edge[i].to]<<endl;
// printf("x: %d cost[%d]=%d\n",x,edge[i].to,cost[edge[i].w]);
if(!inq[i])
{
inq[i] = true;
q[tail++] = edge[i].to;
}
}
head++;
}
printf("%d\n",cost[1]);
}
return 0;
}
AC代码2:
#include<cstdio>
#include<ctype.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<ctime>
using namespace std;
#define NMAX 50000000
#define MOD 1000000007
#define pb push_back
#define ll __int64
int cost[10005];
bool inq[10005];
vector<pair<int, int> >w[10005];
int main()
{
//freopen("input.txt","r",stdin);
//freopen("o1.txt","w",stdout);
int i,j,n,m;
while(~scanf("%d%d",&n,&m))
{
for(i = 1; i <= n; i++)
{
scanf("%d",&cost[i]);
w[0].pb(make_pair(i,i));
}
for(i = 1; i <= m; i++)
{
int t1,t2,t3;
scanf("%d%d%d",&t1,&t2,&t3);
w[t2].pb(make_pair(t1,t3));
w[t3].pb(make_pair(t1,t2));
}
queue<int>q;
cost[0] = 0;
for(i = 0; i <= n; i++)
{
inq[i] = 1;
q.push(i);
}
while(!q.empty())
{
int x = q.front();
q.pop();
inq[x] = false;
int len = w[x].size();
for(i = 0; i < len; i++) if(cost[w[x][i].first] > cost[x]+cost[w[x][i].second])
{
cost[w[x][i].first] = cost[x]+cost[w[x][i].second];
// printf("cost[%d]=%d\n",w[x][i].first,cost[w[x][i].first]);
if(!inq[w[x][i].first])
{
inq[w[x][i].first] = true;
q.push(w[x][i].first);
}
}
}
printf("%d\n",cost[1]);
}
return 0;
}