题意: Given two cows: cowi and cowj, their favourite clover range is [Si, Ei] and [Sj, Ej]. If Si <= Sj and Ej <= Ei and Ei - Si > Ej - Sj, we say that cowi is stronger than cowj. 懒得翻译了。。
这题我没注意根据Si <= Sj and Ej <= Ei 可以推出如果要 Ei - Si = Ej - Sj成立,必须Si = Sj and Ej = Ei。
所以傻乎乎的加了好几个东西去判。
首先根据S从小到大,S相同E从大到小排,这样到一个奶牛时前面的所有奶牛都是满足Si <= Sj and Ej <= Ei 条件的,如果利用必须Si = Sj and Ej = Ei,直接跟上面一个奶牛比较,如果一样就直接等于上一个查询的答案。
我的愚蠢做法是去删掉 Ei - Si = Ej - Sj的,那么每个节点得加一个下面E-S最小的以及这个最小的有几个,查询E到最后等于S-E的个数就可以了。
这题比较方便的是范围就0-10^5,不用离散化了~
AC代码:
//#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<ctype.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<cstdlib>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<ctime>
#include<string.h>
#include<string>
#include<sstream>
#include<bitset>
using namespace std;
#define ll long long
#define ull unsigned long long
#define eps 1e-4
#define NMAX 200005
#define MOD 1000000009
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1)
template<class T>
inline void scan_d(T &ret)
{
char c;
int flag = 0;
ret=0;
while(((c=getchar())<'0'||c>'9')&&c!='-');
if(c == '-')
{
flag = 1;
c = getchar();
}
while(c>='0'&&c<='9') ret=ret*10+(c-'0'),c=getchar();
if(flag) ret = -ret;
}
const int maxn = 100000+10;
int n,ans[maxn];
struct node
{
int s,e,pos;
bool operator < (const node &t) const
{
return (s == t.s)?(e > t.e):(s < t.s);
}
};
node P[maxn];
struct Tree
{
int sum,es,esge;
};
Tree T[maxn<<2];
void build(int l, int r, int rt)
{
T[rt].sum = T[rt].esge = 0;
T[rt].es = maxn;
if(l == r) return;
int mid = (l+r)>>1;
build(lson);
build(rson);
}
void pushup(int rt)
{
T[rt].sum = T[rt<<1].sum+T[rt<<1|1].sum;
if(T[rt<<1].es < T[rt<<1|1].es)
{
T[rt].es = T[rt<<1].es;
T[rt].esge = T[rt<<1].esge;
}
else if(T[rt<<1].es > T[rt<<1|1].es)
{
T[rt].es = T[rt<<1|1].es;
T[rt].esge = T[rt<<1|1].esge;
}
else
{
T[rt].es = T[rt<<1].es;
T[rt].esge = T[rt<<1].esge + T[rt<<1|1].esge;
}
}
void updata(int pos, int k, int l, int r, int rt)
{
if(l == r)
{
T[rt].sum++;
if(T[rt].es == k)
T[rt].esge++;
else
{
T[rt].es = k;//不断更新,因为后面的e-s一定更小
T[rt].esge = 1;
}
return;
}
int mid = (l+r)>>1;
if(pos <= mid) updata(pos,k,lson);
else updata(pos,k,rson);
pushup(rt);
}
int query1(int L, int R, int l, int r, int rt)
{
if(L <= l && R >= r)
return T[rt].sum;
int mid = (l+r)>>1;
int ret = 0;
if(L <= mid) ret += query1(L,R,lson);
if(R > mid) ret += query1(L,R,rson);
return ret;
}
int query2(int L, int R, int k, int l, int r, int rt)
{
if(L <= l && R >= r)
{
if(T[rt].es == k) return T[rt].esge;
return 0;
}
int mid = (l+r)>>1;
int ret = 0;
if(L <= mid && T[rt<<1].es <= k) ret += query2(L,R,k,lson);//还没有到达L,R的地方故是小于等于
if(R > mid && T[rt<<1|1].es <= k) ret += query2(L,R,k,rson);
return ret;
}
int main()
{
#ifdef GLQ
freopen("input.txt","r",stdin);
// freopen("o4.txt","w",stdout);
#endif // GLQ
int ha = 100001;
while(~scanf("%d",&n) && n)
{
for(int i = 0; i < n; i++)
{
scanf("%d%d",&P[i].s,&P[i].e);
P[i].pos = i;
}
build(1,ha,1);
sort(P,P+n);
for(int i = 0; i < n; i++)
{
ans[P[i].pos] = query1(P[i].e,ha,1,ha,1) - query2(P[i].e,ha,P[i].e-P[i].s,1,ha,1);
updata(P[i].e,P[i].e-P[i].s,1,ha,1);
}
for(int i = 0; i < n; i++)
printf("%d%c",ans[i],(i==n-1)?'\n':' ');
}
return 0;
}